x/y=5/4 và x+y=18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x / 2 = y / 3 và y + x = 10
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
x / 2 = y / 3 = x + y / 2 + 3 = 10 / 5 = 2
=> x / 2 = 2 => x = 2 . 2 = 4
=> y / 3 = 2 => y = 2 . 3 = 6
Vậy x = 4 ; y = 6
Ta có x / 4 = y / 5 và x + y = 18
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
x / 4 = y / 5 = x + y / 4 + 5 = 18 / 9 = 2
=> x / 4 = 2 => x = 2 . 4 = 8
=> y / 5 = 2 => y = 2 . 5 = 10
Vậy x = 8 ; y = 10
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.2=4\\y=3.2=6\end{cases}}\)
b) Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{18}{9}=2\)
\(\Rightarrow\hept{\begin{cases}x=4.2=8\\y=5.2=10\end{cases}}\)
Các phần còn lại check lại đề bài.
b) Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\Rightarrow x=6\\\frac{y}{3}=3\Rightarrow y=9\\\frac{z}{4}=3\Rightarrow z=12\end{cases}}\)
d) Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+y+z+6}{3+4+5}=\frac{24}{12}=2\)
\(\Rightarrow\hept{\begin{cases}x+1=6\\y+2=8\\z+3=10\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=6\\z=7\end{cases}}\)
a) ta có: \(a:b:c=5:4:3\Rightarrow\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\)
ADTCDTSBN
...
b) ta có: \(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}=\frac{a}{4}=\frac{b}{5}=\frac{3c}{6}\)
ADTCTDSBN
...
c) ta có: \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\)
ADTCDTSBN
...
d) bn xem lại đề giúp mk nha
a) ADTCDTSBN
có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)
=> x/2 = 3 => x = 6
y/3 = 3 => y = 9
z/4 = 3 => z = 12
KL:...
b,c làm tương tự nha
d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)
ADTCDTSBN
có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)
=>...
e) ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)
\(=\frac{21+6}{9}=\frac{27}{9}=3\)
=>...
g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
mà xy = 12 => 4k.3k = 12
12.k2 = 12
k2 = 1
=> k = 1 hoặc k = -1
=> x = 4.1 = 4
y = 3.1 = 3
x=4.(-1) = -4
y=3.(-1) = -3
KL:...
h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
=>...
\(\frac{x}{y}=\frac{5}{4}\Rightarrow\frac{x}{5}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{5}=\frac{y}{4}=\frac{x+y}{5+4}=\frac{18}{9}=2\)
\(\frac{x}{5}=2\Rightarrow x=2\cdot5=10\)
\(\frac{y}{4}=2\Rightarrow y=2\cdot4=8\)
áp dụng t/c dtsbn ta có:
\(\dfrac{x+1}{3}=\dfrac{y+2}{4}=\dfrac{z+3}{5}=\dfrac{x+y+z+1+2+3}{3+4+5}=\dfrac{18+6}{12}=\dfrac{24}{12}=2\)
\(\dfrac{x+1}{3}=2\Rightarrow x=5\\ \dfrac{y+2}{4}=2\Rightarrow y=6\\ \dfrac{z+3}{5}=2\Rightarrow z=7\)
Ta có :
\(\frac{x}{y}=\frac{5}{4}\Rightarrow\frac{x}{5}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có ;
\(\frac{x}{5}=\frac{y}{4}=\frac{x+y}{5+4}=\frac{18}{9}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.5=10\\y=2.4=8\end{cases}}\)
\(\frac{x}{5}\)\(=\frac{y}{4}\)\(=\frac{18}{5+4}\)\(=2\)
\(\frac{x}{5}\)\(=2=>x=10\)
\(\frac{y}{4}\)\(=2=>y=8\)
\(=>x=10;y=8\)