Tìm GTLN:
\(A=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=x^2;b=y^2\left(a;b\ge0\right)\)
\(A=\frac{\left(a-b\right)\left(1-ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)
\(\left|A\right|=\frac{\left|\left(a-b\right)\left(1-ab\right)\right|}{\left(1+a\right)^2\left(1+b^2\right)}\le\frac{\left(a+b\right)\left(1+ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)
\(\left(1+a\right)\left(1+b\right)=\left(a+b\right)+\left(1+ab\right)\ge2\sqrt{\left(a+b\right)\left(1+ab\right)}\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\ge4\left(a+b\right)\left(1+ab\right)\)
\(\Rightarrow\left|A\right|\le4\)
\(\Rightarrow-4\le A\le4\)
\(A=-4\Leftrightarrow a=0;b=1\Leftrightarrow x=0;y=+1or-1\)
\(A=4\Leftrightarrow a=1;b=0\Leftrightarrow x=+-1;y=0\)
Vậy \(MinA=-4;MaxA=4\)
đặt \(a=x^2,b=y^2\left(a,b\ge0\right)\)thì \(P=\frac{\left(a-b\right)\left(1-ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)
Zì \(a,b\ge0\)nên
\(\left(a-b\right)\left(1-ab\right)=a-a^2b-b+ab^2\le a+ab^2=a\left(1+b^2\right)\le a\left(1+2b+b^2\right)=a\left(1+b\right)^2\)
Lại có \(\left(1+a\right)^2=\left(1-a\right)^2+4a\ge4a\)
=>\(P\le\frac{a\left(1+b\right)^2}{4a\left(1+b\right)^2}=\frac{1}{4}\)
dấu "=" xảy ra khi zà chỉ khi\(\hept{\begin{cases}a=1\\b=0\end{cases}=>\hept{\begin{cases}x=\pm1\\y=0\end{cases}}}\)
zậy \(maxP=\frac{1}{4}khi\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)
\(B=\left[\left(\frac{x}{y}-\frac{y}{x}\right):\left(x-y\right)-2.\left(\frac{1}{y}-\frac{1}{x}\right)\right]:\frac{x-y}{y}\)
\(=\left[\frac{x^2-y^2}{xy}.\frac{1}{x-y}-2.\frac{x-y}{xy}\right].\frac{y}{x-y}\)
\(=\left(\frac{\left(x-y\right)\left(x+y\right)}{xy.\left(x-y\right)}-\frac{2.\left(x-y\right)}{xy}\right).\frac{y}{x-y}\)
\(=\left(\frac{x+y}{xy}-\frac{2x-2y}{xy}\right).\frac{y}{x-y}=\frac{x+y-2x+2y}{xy}.\frac{y}{x-y}=\frac{y.\left(3y-x\right)}{xy.\left(x-y\right)}=\frac{3y-x}{x.\left(x-y\right)}\)
\(C=\left(\frac{x+y}{2x-2y}-\frac{x-y}{2x+2y}-\frac{2y^2}{y-x}\right):\frac{2y}{x-y}\)
\(=\left(\frac{x+y}{2.\left(x-y\right)}-\frac{x-y}{2.\left(x+y\right)}+\frac{2y^2}{x-y}\right).\frac{x-y}{2y}\)
\(=\frac{\left(x+y\right)^2-\left(x-y\right)^2+2.2y^2.\left(x+y\right)}{2.\left(x-y\right)\left(x+y\right)}.\frac{x-y}{2y}\)
\(=\frac{\left(x+y+x-y\right)\left(x+y-x+y\right)+4y^2.\left(x+y\right)}{2.\left(x-y\right)\left(x+y\right)}.\frac{x-y}{2y}\)
\(=\frac{4xy+4xy^2+4y^3}{2.\left(x-y\right)\left(x+y\right)}.\frac{x-y}{2y}=\frac{4y.\left(x+xy+y^2\right).\left(x-y\right)}{4y.\left(x-y\right)\left(x+y\right)}=\frac{x+xy+y^2}{x+y}\)
\(D=3x:\left\{\frac{x^2-y^2}{x^3+y^3}.\left[\left(x-\frac{x^2+y^2}{y}\right):\left(\frac{1}{x}-\frac{1}{y}\right)\right]\right\}\)
\(=3x:\left\{\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}.\left[\frac{xy-x^2-y^2}{y}:\frac{y-x}{xy}\right]\right\}\)
\(=3x:\left[\frac{x-y}{x^2-xy+y^2}.\left(\frac{xy-x^2-y^2}{y}.\frac{xy}{y-x}\right)\right]\)
\(=3x:\left(\frac{x-y}{x^2-xy+y^2}.\frac{xy.\left(x^2-xy+y^2\right)}{y.\left(x-y\right)}\right)\)
\(=3x:\frac{xy.\left(x-y\right)\left(x^2-xy+y^2\right)}{y.\left(x-y\right)\left(x^2-xy+y^2\right)}=3x:x=3\)
\(E=\frac{2}{x.\left(x+1\right)}+\frac{2}{\left(x+1\right)\left(x+2\right)}+\frac{2}{\left(x+2\right)\left(x+3\right)}\)
\(=2.\left(\frac{1}{x.\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}\right)\)
\(=2.\frac{\left(x+2\right)\left(x+3\right)+x.\left(x+3\right)+x.\left(x+1\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=2.\frac{x^2+2x+3x+6+x^2+3x+x^2+x}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=2.\frac{3x^2+9x+6}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}=2.\frac{3.\left(x^2+3x+2\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\frac{6.\left(x^2+x+2x+2\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\frac{6.\left[x.\left(x+1\right)+2.\left(x+1\right)\right]}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\frac{6.\left(x+1\right)\left(x+2\right)}{x.\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\frac{6}{x.\left(x+3\right)}\)
\(A\)xác định \(\Leftrightarrow x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\ne0\)
\(\Leftrightarrow x^2y^2+1+x^2-x^2y-y+y^2\ne0\)
\(\Leftrightarrow\left(x^2y^2+y^2\right)+\left(x^2+1\right)-\left(x^2y+y\right)\ne0\)
\(\Leftrightarrow y^2\left(x^2+1\right)+\left(x^2+1\right)-y\left(x^2+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left(y^2-y+1\right)\ne0\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\)
Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall y\end{cases}}\)\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\forall x;y\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\forall x;y\)
\(\Leftrightarrow A\ne0\forall x;y\)