cho a2+b2=6
CM \(\sqrt{3\left(a^2+6\right)}\ge\left(a+b\right)\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)
\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta có;
\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)
\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)
Dấu \(=\)xảy ra khi \(a=b=c=1\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$C^2\leq (a+b)[(29a+3b)+(29b+3a)]=32(a+b)^2$
$(a+b)^2\leq (a^2+b^2)(1+1)\leq 4$
$\Rightarrow C^2\leq 32.4$
$\Rightarrow C\leq 8\sqrt{2}$
Vậy $C_{\max}=8\sqrt{2}$. Dấu "=" xảy ra khi $a=b=1$
2: Điểm rơi... đẹp!
Áp dụng bất đẳng thức AM - GM:
\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+4\ge4b\\c^2+9\ge6c\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2+14\ge2\left(a+2b+3c\right)=28\).
\(\Rightarrow a^2+b^2+c^2\ge14\).
Đẳng thức xảy ra khi a = 1; b = 2; c = 3.
1: Ta có \(y^2\ge6-x+x-2=4\Rightarrow y\ge2\).
Đẳng thức xảy ra khi x = 6 hoặc x = 2
\(y^2\le2\left(6-x+x-2\right)=8\Rightarrow y\le2\sqrt{2}\).
Đẳng thức xảy ra khi x = 4.
Bài 1:
Áp dụng BĐT AM-GM ta có:
$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$
$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$
Cộng theo vế và thu gọn:
$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$
Ta có đpcm.
Bài 2:
$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$
$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$
$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$
Cộng theo vế và rút gọn thu được:
$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Ap dung bdt AM-GM cho 2 so ko am A,B ta co
\(\sqrt{A}+\sqrt{B}\)\(\le\)\(2\sqrt{\frac{A+B}{2}}\)
VP =\(\sqrt{AB}.\left(\sqrt{A}+\sqrt{B}\right)\le\frac{A+B}{2}.2\sqrt{\frac{A+B}{2}}\)
=>VP2 \(\le4.\frac{\left(A+B\right)^3}{4}=\left(A+B\right)^3\left(3\right)\)
Tu (2),(3) => DPCM
ĐKXĐ: \(-1\le x\le1\)
Đặt \(\left\{{}\begin{matrix}\sqrt{1-x}=a\\\sqrt{1+x}=b\end{matrix}\right.\) \(\Rightarrow a^2+b^2=2\) ta được:
\(A=\dfrac{\sqrt{1-ab}\left(a^3+b^3\right)}{2-ab}=\dfrac{\sqrt{\dfrac{a^2+b^2}{2}-ab}\left(a+b\right)\left(a^2+b^2-ab\right)}{a^2+b^2-ab}\)
\(=\sqrt{\dfrac{a^2+b^2-2ab}{2}}\left(a+b\right)=\dfrac{\left|a-b\right|\left(a+b\right)}{\sqrt{2}}\)
\(=\dfrac{\left|\sqrt{1-x}-\sqrt{1+x}\right|\left(\sqrt{1-x}+\sqrt{1+x}\right)}{\sqrt{2}}\)
- Với \(-1\le x\le0\Rightarrow A=\dfrac{\left(\sqrt{1-x}-\sqrt{1+x}\right)\left(\sqrt{1-x}+\sqrt{1+x}\right)}{\sqrt{2}}=-\sqrt{2}x\)
- Với \(0\le x\le1\Rightarrow A=\dfrac{\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(\sqrt{1+x}+\sqrt{1-x}\right)}{\sqrt{2}}=\sqrt{2}x\)
b.
TH1: \(\left\{{}\begin{matrix}-1\le x\le0\\-\sqrt{2}x\ge\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow-1\le x\le-\dfrac{1}{2\sqrt{2}}\)
TH2: \(\left\{{}\begin{matrix}0\le x\le1\\\sqrt{2}x\ge\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{2\sqrt{x}}\le x\le1\)
Xửa đề thành tìm nghiệm nguyên rồi làm
\(x^2+xy-2008x-2009y-2010=0\)
\(\Leftrightarrow\left(x-2009\right)\left(x+y+1\right)=1\)
làm nôt