Chứng minh \(\left(a+b+c\right)^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi, hình như bạn nhớ nhầm rồi đấy, ko có HĐT đó đâu, mà có HĐT thức ấy nhưng a+b+c = 0 nữa cơ
a) \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3ab\left(a+b\right)+3\left(a+b\right)\left(ac+bc+c^2\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
b) \(VT=a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)
(
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh
hhhhhhhhhhhhh
Biến đổi vế trài ta có
a3+b3+c3-3abc+3ab(a+b)-3ab(a+b)
=(a+b)(a2-ab+b2)-3ab(a+b+c)+3ab(a+b)+c3
=(a+b)(a+b)2+c3-3ab(a+B+c)
=......................
Bn cứ nhóm lại là = vế phải.
bạn thiếu dấu cộng giữa b2 và c2 vì vậy vế phải là (a+b+c)(a2+b2+c2 -ab-bc-ac)
Ta có : a3+b3+c3 -3abc = (a+b)3 -3ab(a+b)+c3 -3abc = (a+b)3 +c3 -3ab(a+b+c)
=(a+b+c)3 -3(a+b)c(a+b+c)-3ab(a+b+c)
=(a+b+c)((a+b+c)2-3(ac+bc)-3ab)
=(a+b+c)(a2+b2+c2 +2ab +2ac +2bc -3ab -3bc -3ac )
=(a+b+c)(a2+b2 +c2-ab-bc-ac)=vp (đpcm)
VT = a3 + b3 + c3 - 3abc = (a + b)(a2 - ab + b2) + c3 - 3abc
= (a + b)(a2 + 2ab + b2 - 3ab) + c3 - 3abc
= (a + b)3 - 3ab(a + b) + c3 - 3abc
= (a + b+ c)[(a + b)2 - c(a + b) + c2] - 3ab(a + b+ c)
= (a + b + c))(a2 + 2ab + b2 - ac - bc + c2 - 3abc)
= (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = VP
=> ĐPCM
Sửa đề :
VP= (a+b+c)(a2+b2+c2-ab-bc-ca)
=a3+ab2+ac2-a2b-abc-ca2+ba2+b3+bc2-ab2-b2c-abc+ca2+cb2+c3-abc-bc2-c2a
=a3+b3+c3-3abc
Cách này đỡ phức tạp hơn cách của edogawa conan
Nguyễn Xuân Đình Lực:
mình ghi rõ trên rùi, sắp xếp theo thứ tự luôn cho dễ nhìn kìa bạn:
Cặp 1: $a^3b$ và $abc^2$ tạo ra $a^2bc$
Cặp 2: $b^3c$ và $bca^2$ tạo ra $b^2ca$
Cặp 3: $c^3a$ và $cab^2$ tạo ra $c^2ab$
Lời giải:
Ba số thực $a,b,c$ cần có thêm điều kiện không âm mới đúng.
BĐT cần chứng minh tương đương với:
$ab^3+bc^3+ca^3+2abc(a+b+c)\leq a^3b+b^3c+c^3a+ab^3+bc^3+ca^3+abc(a+b+c)$
$\Leftrightarrow abc(a+b+c)\leq a^3b+b^3c+c^3a(*)$
Áp dụng BĐT Bunhiacopxky:
$(a^3b+b^3c+c^3a)(abc^2+bca^2+cab^2)\geq (a^2bc+b^2ca+c^2ab)^2$
$\Rightarrow a^3b+b^3c+c^3a\geq abc(a+b+c)$
BĐT $(*)$ đúng nên ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
a,b,c>0
\(VP-VT=a^3b+b^3c+c^3a-abc\left(a+b+c\right)=abc\Sigma\frac{\left(a-b\right)^2}{a}\ge0\)
Sửa đề : CM \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
Ta có : \(VT=a^3+b^3+c^3-3abc\)
\(=\left(a^3+b^3+3a^2b+3b^2a\right)+c^3-3a^2b-3b^2a-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]\)
\(=\left(a+b+c\right)\left[a^2+b^2+2ab-ac-bc+c^2-3ab\right]\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=VP\)
\(\left(đpcm\right)\)