C/minh nếu \(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}\)
Tính \(A=\frac{-2x+y+5z}{2x-3y-6z}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì \(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}=K\)
=> x = -4k ; y = -7k, z = 3k
\(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}=\frac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{2.\left(-4k\right)-3.\left(-7k\right)-6.3k}\)
\(=\frac{16k}{-5k}=\frac{16}{-5}=\frac{-16}{5}\)
nhớ tick 9 cái ****
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/-4=y/-7=z/3
=-2x+y+5z/-2.(-4)+(-7)+5.3
= 2x-3y-6z/2.(-4)-3.(-7)-6.3
=> -2x+y+5z/16=2x-3y-6z/-5
=> -2x+y+5z/2x-3y-6z
=16/-5
Vậy A = 16/-5
Đặt x/-4=y/-7=z/3=k
=>x=-4k,y=-7k,z=3k(*)
Thay (*) vào A ta có:
A=(-2x+y+5z)/(2x-3y-6z)
=(8k-7k+15k)/(-8k+21k-18k)
=16k/-5k
=16/-5
Vậy A=-16/5
đặt\(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=-4k\\y=-7k\\z=3k\end{cases}}\). Thay vào A ta được:
\(A=-\frac{2\times\left(-4k\right)+\left(-7k\right)+5\times\left(3k\right)}{2\times\left(-4k\right)-3\times\left(-7k\right)-6\times\left(3k\right)}=-\frac{-8k-7k+15k}{-8k+21k-18k}=-\frac{0}{-5k}=0\)
Vậy A=0
Đặt \(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}=k\)
\(\Rightarrow x=-4k;y=-7k;c=3k\) (1)
Thay (1) vào A ta đc:
\(A=\frac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{2\left(-4k\right)-3\left(-7k\right)-6.3k}\)
\(\Rightarrow A=\frac{8k+\left(-7k\right)+15k}{-8k+21k+\left(-18k\right)}\)
\(\Rightarrow A=\frac{k\left[8+\left(-7\right)+15\right]}{k\left[-8+21+\left(-18\right)\right]}\)
\(\Rightarrow A=\frac{k16}{-5k}\)
\(\Rightarrow A=\frac{-16}{5}\)
Vậy \(A=\frac{-16}{5}\)
Thôi khó lắm, bn hỏi cô giáo đi .
Mik thực sự không biết làm .
Bài này chỉ có những người lớp 7, 8, 9 mới làm đc .
Mik mới chỉ có lớp ..... 6 mà thôi !
Bạn thông cảm cho mik nha ............!!