Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(14,P=x^2+xy+y^2-3x-3y+3\\ P=\left(x^2+xy+\dfrac{1}{4}y^2\right)-3\left(x+\dfrac{1}{2}y\right)+\dfrac{3}{4}y^2-\dfrac{3}{2}y+3\\ P=\left(x+\dfrac{1}{2}y\right)^2-3\left(x+\dfrac{1}{2}y\right)+\dfrac{9}{4}+\dfrac{3}{4}\left(y^2-2y+1\right)\\ P=\left(x+\dfrac{1}{2}y-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2\ge0\)
\(x^2+4y^2+z^2-2x+8y-6x+15=0\)
<=> \(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1=0\)
mà \(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\)≥0
=> \(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\)≥1
=> ko có giá trị nào của x,y,z thỏa mãn
\(A=\dfrac{1}{x^2-4x+9}=\dfrac{1}{\left(x-2\right)^2+5}\)
mà (x+2)2≥0
=> (x+2)2+5≥5
=> \(\dfrac{1}{\left(x-2\right)^2+5}\)≤ 1/5
=> Max A = 1/5 dấu ''='' xảy ra khi x=2
=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1=0
=(x-1)^2+(2y-2)^2+(z-3)^2+1=0
Vì (x-1)^2> với mọi x
(2y-2)^2>0 với mọi y
(z-3)^2>0 với mọi z
=>(x-1)^2+(2y-2)^2+(z-3)^2+1>0
=>đẳng thức vô nghiệm
Ta có: x2 + 4y2 + z2 - 2x + 8y - 6z + 15 = 0 (Sửa đề)
=> (x2 - 2x + 1) + 4(y2 + 2x + 1) + (z2 - 6z + 9) + 1 = 0
=> (x - 1)2 + 4(y + 1)2 + (z - 3)2 + 1 = 0
=> ko có giá trị x, y , z thõa mãn (Do (x - 1)2 + 4(y + 1)2 + (z - 3)2 + 1\(\ge\)1 \(\forall\)x;y;z)
\(x^2+4y^2+z^2-2x+8y-6z+15=0\)
\(\Leftrightarrow\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1=0\)
Lại có \(\left(x-1\right)^2\ge0;\left(y+1\right)^2\ge0;\left(z-3\right)^2\ge0\forall x,y,z\in R\)
\(\Rightarrow\left(x-1\right)^2+\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\forall x,y,z\in R\) (trái với đề bài)
Do đó không tồn tại x,y,z thỏa mãn đẳng thức trên
Ta có: \(x^2+4y^2+z^2-2a+8y-6z+15\)
\(=\left(x^2-2a+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(a-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\) (Vì \(\left(a-1\right)^2\ge0;\left(2y+2\right)^2\ge0;\left(z-3\right)^2\ge0\forall x;y;z)\)
Vậy không có giá trị x;y;z thỏa mãn đề bài cho (đpcm)
Ta có \(x^2+4y^2+z^2-2x+8y-6z+15=0\)
<=> \(x^2-2x+1+4y^2+8y+4+z^2-6z+9+1=0\)
<=> \(\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1=0\)
<=> \(\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2=-1\)
Mà \(\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^3\ge0\forall x,y,z\) nên vô lí
Vậy....