Tìm n thỏa mãn :
2 . 24 < 2n < 256
Ai đúng cho 3 tk !!! ( Hurry up )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt n2 = x \(\left(x\in N\right)\)
Ta có: (x - 4)(x - 14) (x- 24) (x - 34 ) < 0
Lập bảng xét dấu (Hoặc dùng phương pháp khoảng) ta sẽ thu được kết quả:
4 < x < 14 hoặc 24 < x < 34
Dễ thấy chọn được 2 số chính phương trong các khoảng trên: x = 9; x = 25 => n = +/- 3; n = +/- 5
7n + 24 chia hết cho n + 1
⇒7n + 7 + 17 chia hết cho n + 1
⇒7(n + 1) + 17 chia hết cho n + 1
⇒17 chia hết cho n + 1
⇒n + 1 ∈ Ư(17) = {1; -1; 17; -17}
Mà n ∈ N
⇒n + 1 ∈ {1; 17}
⇒n ∈ {0; 16}
Vậy ...
7n + 24 = 7n + 7 + 17 = 7(n + 1) + 17
Để (7n + 24) ⋮ (n + 1) thì 17 ⋮ (n + 1)
⇒ n + 1 ∈ Ư(17) = {-17; -1; 1; 17}
⇒ n ∈ {-18; -2; 0; 16)
Mà n ∈ ℕ
⇒ n ∈ {0; 16}
\(\Leftrightarrow\sqrt{9x^2+16x+96}=3x-16y-24\)
Vế phải nguyên \(\Rightarrow\) vế trái nguyên
\(\Rightarrow9x^2+16x+96=k^2\)
\(\Rightarrow81x^2+144x+864=\left(3k\right)^2\)
\(\Leftrightarrow\left(9x+8\right)^2+800=\left(3k\right)^2\)
\(\Leftrightarrow\left(3k-9x-8\right)\left(3k+9x+8\right)=800\)
Pt ước số thật kinh dị với số ước của 800
Ta có \(9x^2+16x+96=\left(3x-24-16y\right)^2\)
\(\Leftrightarrow9x^2+16x+96=9x^2-6x\left(16y+24\right)+\left(16y+24\right)^2\)\(\Leftrightarrow16x+96=\left(16y+24\right)\left(16y+24-6x\right)\)
\(\Leftrightarrow8\left(2x+12\right)=4\left(4y+6\right).2\left(8y+12-3x\right)\)
\(\Leftrightarrow2x+12=\left(4y+6\right)\left(8y+12-3x\right)\)\(\Leftrightarrow2x+12=32y^2+48y-12xy+48y+72-18x\)
\(\Leftrightarrow32y^2+96y-12xy-20x+60=0\)\(\Leftrightarrow32y^2+96y+60=12xy+20x\)\(\Leftrightarrow8y^2+24y+15=3xy+5x\)
\(\Leftrightarrow8y^2+24y+15=x\left(3y+5\right)\)\(\Leftrightarrow x=\dfrac{8y^2+24y+15}{3y+5}\)
\(\Leftrightarrow9x=\dfrac{9\left(8y^2+24y+15\right)}{3y+5}=\dfrac{72y^2+216y+135}{3y+5}\)\(=\dfrac{\left(72y^2+120y\right)+\left(96y+160\right)-25}{3y+5}\)\(=24y+32-\dfrac{25}{3y+5}\)
\(\Leftrightarrow24y+32-\dfrac{25}{3y+5}\in Z\)\(\Rightarrow3y+5\in U\left(25\right)=\left\{\pm1,\pm5,\pm25\right\}\)\(\Leftrightarrow3y\in\left\{-4,-6,-10,0,-30,20\right\}\)\(\Rightarrow y\in\left\{-2,-10,0\right\}\)
+) Với y=-2=> x=1
+) với y=-10=> x=-23
Vậy pt cho 2 cặp (x,y) nguyên =(1,-2),(-23,-10)
Sửa đề: \(x^2-4x+m-6=0\)
\(\text{Δ}=\left(-4\right)^2-4\cdot1\left(m-6\right)\)
\(=16-4m+24=-4m+40\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>-4m+40>0
=>-4m>-40
=>m<10
Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=4\\x_1x_2=\dfrac{c}{a}=m-6\end{matrix}\right.\)
\(x_1^2+24=4x_2-x_1x_2\)
=>\(x_1^2+24=x_2\left(x_1+x_2\right)-x_1x_2\)
=>\(x_1^2-x_2^2=-24\)
=>\(\left(x_1-x_2\right)\left(x_1+x_2\right)=-24\)
=>\(x_1-x_2=-6\)
=>\(\left(x_1-x_2\right)^2=36\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2=36\)
=>\(4^2-4\left(m-6\right)=36\)
=>4(m-6)=16-36=-20
=>m-6=-5
=>m=1(nhận)
Ta có:
\(5x+14y-2xy=35\)
\(\Leftrightarrow\left(5x-35\right)+\left(14y-2xy\right)=0\)
\(\Leftrightarrow\left(7-x\right)\left(2y-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\y=2,5\end{cases}}\)
Thế x = 7 vào cái còn lại ta được
\(7^2-4y^2=24\)
\(\Leftrightarrow y^2=\frac{25}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}y=\frac{5}{2}\\y=-\frac{5}{2}\end{cases}}\)
Thế y = 2,5 vào cái còn lại ta được
\(x^2-4.2,5^2=24\)
\(\Leftrightarrow x^2=49\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
Theo đề suy ra: \(y=\frac{x^2-24}{x+5}=\frac{x^2-25+1}{x+5}=\frac{\left(x+5\right)\left(x-5\right)+1}{x+5}=x-5+\frac{1}{x+5}\)
Để \(x,y\inℤ\)thì \(\frac{1}{x+5}\inℤ\Leftrightarrow1⋮\left(x+5\right)\Leftrightarrow x+5=\pm1\Leftrightarrow\orbr{\begin{cases}x=-4\Rightarrow y=-8\\x=-6\Rightarrow y=-12\end{cases}}\)
Vậy pt có 2 nghiệm là (-4;-8) và (-6;-12)
Tìm n thỏa mãn :
2 . 24 < 2n < 256
n = 4
n = 5
n = 6
n = 7
n = 8
ta có :\(2.2^4\)<\(2^n\)<256
(=)\(2^6\)<\(2^n\)<\(2^8\)
=>n\(\in\){6,7,8}