|x-3|=3x-2
Please help me!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2-x}{4}=\dfrac{3x-1}{-3}\\ \Rightarrow-3\left(2-x\right)=4\left(3x-1\right)\\ \Rightarrow3x-6=12x-4\\ \Rightarrow12x-4-3x+6=0\\ \Rightarrow9x+2=0\\ \Rightarrow9x=-2\\ \Rightarrow x=-\dfrac{2}{9}\)
\(\dfrac{2-x}{4}=\dfrac{3x-1}{-3}\)
\(\Rightarrow-3\left(2-x\right)=4\left(3x-1\right)\)
\(-6+3x=12x-4\)
\(3x-12x=6-2\)
\(-9x=4\)
\(x=\dfrac{4}{-9}\)
*Gọi a=x-1, b=2x-3, c=3x-5.
-Phương trình trở thành:
a3+b3+c3-3abc=0 ⇔(a+b)3+c3-3ab(a+b)-3abc=0
⇔(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=0
⇔(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)=0
⇔(a+b+c)(a2+b2+c2-ab-ac-bc)=0
⇔a+b+c=0 hay a2+b2+c2-ab-ac-bc=0
*a+b+c=0 ⇔x-1+2x-3+3x-5=0 ⇔6x-9=0 ⇔x=\(\dfrac{3}{2}\)
*a2+b2+c2-ab-ac-bc=0
Vì a2+b2+c2-ab-ac-bc≥0 và dấu bằng xảy ra khi và chỉ khi a=b=c nên
=>x-1=2x-3 ⇔x=2
=>x-1=3x-5 ⇔x=2
=>2x-3=3x-5⇔ x=2
=\(^{\dfrac{-x^2-xy}{5\left(x^2-y^2\right)}}\).\(\dfrac{3\left(x^3-y^3\right)}{x^2-xy}\)
=\(\dfrac{-3\left(x-y\right)}{5}\)
ta có x2y + xy - x = xy (x+1)-x-1=xy(x+1) - (x+1) = (x+1)(xy-1)=5
Thực hiện phép chia \(a\left(x\right)=x^3+2x^2+3x-1\) cho \(b\left(x\right)=x-2\), ta được:
\(a\left(x\right)=\left(x-2\right)\cdot Q\left(x\right)+r\)
\(\Rightarrow a\left(2\right)=\left(2-2\right)\cdot Q\left(2\right)+r=r\)
\(\Rightarrow r=2^3+2\cdot2^2+3\cdot2-1=21\)
Vậy số dư phép chia \(a\left(x\right)\) cho \(b\left(x\right)\) là \(21\).
Giải:
Ta có:
|x+1/3|=2/3
⇒x+1/3=2/3 hoặc x+1/3=-2/3
x=1/3 hoặc x=-1
+)TH1: (nếu như có ngoặc)
Khi x=1/3:
A=(1/3)2-3.(1/3)+1
A=1/9
Khi x=-1
A=(-1)2-3.(-1)+1
A=5
+)TH2: (nếu x ko có ngoặc)
Khi x=-1
A=-12-3.-1+1
A=3
Trường hợp này chỉ có -1 vì 1/3 2 =1/9 ; còn ko có ngoặc hay có ngoặc còn tùy thuộc vào đề bài và cách suy nghĩ của bạn nhé!
Chúc bạn học tốt!
\(\left|x-3\right|=3x-2\Leftrightarrow\hept{\begin{cases}x-3=3x-2\\x-3=-\left(3x-2\right)\end{cases}\Leftrightarrow\hept{\begin{cases}4x=1\\x-3=2-3x\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{4}\\4x=5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{4}\\x=\frac{5}{4}\end{cases}}}\)