Chứng minh rằng:
a) (n+)^2 -(n-)^2 chia hết cho 8
b) (n+7)^2 -(n-5)^2 chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,xét n chẵn hiển nhiên A ko chia hết cho 2
n lẻ thì n^2 lẻ n lẻ
->A lẻ -> A ko chia hết cho 2
b,n^2 có tận cùng là:0,1,4,5,6,9
->n^2+n có tận cùng:0,2,8
->n^2+n+1 có tận cùng:1,3,9 ko chia hết cho 5
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
a+ 5b chia hết cho 7
=> 10*(a+5b) chia hết cho 7
=> 10a+50b chia hết cho 7
=> 10a+ b + 49 b chia hết cho 7
mà 49b chia hết cho 7
=> 10a+b chia hết cho 7