Tìm tập các giá trị của x biết: ( x+1/2 ) . ( x+5) > 0
Giúp mk với ! Gấp lém rùi !
Ai nhanh tay mk tick cho !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2x+14=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-7\end{cases}}\)
Vậy x = 2 hoặc x = - 7 thì ( x - 2 ) ( 2x + 14 ) ==0
a) Nhận xét :
/ x + 8 / > 0 với mọi x
/ y - 3 / > 0 với mọi y
=> / x + 8 / + / y - 3 / > 0
=> / x + 8 / + / y - 3 / + 2018 > 2018
=> M > 2018
=> Giá trị nhỏ nhất của M = 2018
Dấu " = " xảy ra khi :
/ x + 8 / = 0
và / y - 3 / = 0
=> x + 8 = 0
và y - 3 = .0
=> x = - 8
Và y = 3
Vậy giá trị nhỏ nhất của M là 2018 khi x = - 8 và y = 3
b) Nhận xét :
/ x + 2 / > 0 với mọi x
/ y - 1 / > 0 với mọi y
=> / x + 2 / + / y - 1 / > 0
=> - / x + 2 / - / y - 1 / < 0
=> - / x + 2 / - / y - 1 / + 1999 < 1999
=> N < 1999
=> Giá trị lớn nhất của N = 1999
Dấu " = " xảy ra khi :
/ x + 2 / = 0
và / y - 1 / = 0
=> x + 2 = 0
và y - 1 = 0
=> x = - 2
và y = 1
Vậy giá trị lớn nhất của N là 1999 khi x = - 2 và y = 1
\(\left(2x-1\right)^2-3.\left(x+2\right)^2=4.\left(x-2\right)-5.\left(x-1\right)^2\)
\(\Leftrightarrow4x^2-4x+1-3\left(x^2+4x+4\right)=4x-8-5.\left(x^2-2x+1\right)\)
\(\Leftrightarrow4x^2-4x+1-3x^2-7x-12=4x-8-5x^2+10x-5\)
\(\Leftrightarrow x^2-11x-11=14x-13-5x^2\)
\(\Leftrightarrow6x^2-25x+2=0\)
Tự làm tiếp nha
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
a: (x+2)(x-3)>0
nên x+2;x-3 cùng dấu
=>x>3 hoặc x<-2
b: (x-1)(x+4)<=0
nên x-1 và x+4 khác dấu
=>-4<=x<=1
A=[(-4x-8)+13]/(x+2)
=-4+13/(x+2) thuộc Z <=> 13/(x+2) thuộc Z <=> 13 chia hết cho (x+2)(do x thuộc Z)
hay (x+2) thuộc Ư(13)={-1;1;13;-13}
tìm x
B=[(x²-1)+6]/(x-1)
=x+1+6/(x-1)
làm tiếp như A
C=[(x²+3x+2)-3]/(x+2)
=[(x+2)(x+1)-3]/(x+2)
=x+1-3/(x+2)
làm tiếp như A
2/cậu cho đề thiếu đọc lại đề xem A có thuộc Z không
3,4 cũng vậy
\(\left(x+\frac{1}{2}\right)\cdot\left(x+5\right)>0\)
\(\Leftrightarrow\)\(x+\frac{1}{2}\)và \(x+5\)cùng dấu
+ \(\hept{\begin{cases}x+\frac{1}{2}>0\\x+5>0\end{cases}\Rightarrow\hept{\begin{cases}x>-\frac{1}{2}\\x>-5\end{cases}}}\)
\(\Rightarrow x>-\frac{1}{2}\)( vì x > -1/2 thì x > -5 nha )
+ \(\hept{\begin{cases}x+\frac{1}{2}< 0\\x+5< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -\frac{1}{2}\\x< -5\end{cases}}}\)
\(\Rightarrow x< -5\)
Vậy \(\orbr{\begin{cases}x>-\frac{1}{2}\\x< -5\end{cases}}\)