1.Giả sử x e Q.kí hiệu [x], đọc là phần nguyên của x, là số nguyên lớn nhất không vượt quá x, nghĩa là [x] là số nguyên sao cho [x] < x < [x] + 1
Tìm \(\left[2.3\right],\left[\frac{1}{2}\right],\left[-4\right],\left[-5.16\right]\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2< 2,3< 3\Rightarrow\left[2,3\right]=2\)
\(0< \frac{1}{2}< 1\Rightarrow\left[\frac{1}{2}\right]=0\)
\(-4\le-4< -3\Rightarrow\left[-4\right]=-4\)
\(-6< 5,16< -5\Rightarrow\left[-5;16\right]=-6\)
+) 2 < 2,3 < 3
=> [ 2,3 ] = 2
+) \(0< \frac{1}{2}< 1\)
\(\Rightarrow\left[\frac{1}{2}\right]=0\)
+) \(-4\le-4< -3\)
\(\Rightarrow\left[-4\right]=-4\)
+) -6 < -5,16 < -5
=> [ - 5,16 ] = - 6
Ta có: 2 < 2,3 < 3 ⇒ [2,3] = 2
0 < 1/2 < 1 ⇒ [1/2]=0
-4 ≤ -4 < -3 ⇒ [-4] = -4
-6 < -5,16 < -5 ⇒ [-5,16] = -6
Ta có : $[2,3]=2$
$[\dfrac{1}{2}]=0$
$[-4]=-4$
$[-5,16]=-6$
- Ta thấy \([2,3]\) là số nguyên lớn nhất mà không vượt quá 2,3 là số 2.
Vậy \([2,3]\) = 2
- Số nguyên lớn nhất không vượt quá \(\dfrac{1}{2}\) là 0.
Vậy \(\left[\dfrac{1}{2}\right]\) = 0
- Số nguyên lớn nhất không vượt quá -4 là -4
Vậy \(\left[-4\right]\) = -4
- Số nguyên lớn nhất không vượt quá -5,16 là -6
Vậy \(\left[-5,16\right]\) = -6
Ta có \(-2< -\dfrac{4}{3}< -1\) nên \(\left[-\dfrac{4}{3}\right]=-2\).
\(0< \dfrac{1}{2}< 1\) nên \(\left[\dfrac{1}{2}\right]=0\).
\(\left[6,5\right].\left[\frac{2}{3}\right]+\left[2\right].7,2+\left[8,4\right]-6,6=6.0+2.7,2+8,4-6,6\)
\(=16,2\)