CAN GAP GAP
Cho tam giác ABC có A = 80o, B = 60o, C = 40o. Kẻ phân giác BD của tam giác.
Chứng minh rằng AB + AD = BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC=căn 10^2-6^2=8cm
BD là phân giác
=>DA/AB=DC/BC
=>DA/3=DC/5=8/8=1
=>DA=3cm; DC=5cm
b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
=>AB/HA=BC/AC
=>AB*AC=AH*BC
c: S HAC=1/2*HA*HC=1/2*4,8*6,4=15,36cm2
Ta có ∠C = 180o - 80o - 40o = 60o
Vì CI là tia phân giác của góc C nên ∠(ACI) = 60o : 2 = 30o. Chọn D
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)
Vậy: BC=10cm; AD=3cm; CD=5cm
b) Ta có: \(\dfrac{CE}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)
\(\dfrac{CD}{CB}=\dfrac{5}{10}=\dfrac{1}{2}\)
Do đó: \(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)
Xét ΔCED và ΔCAB có
\(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)(cmt)
\(\widehat{C}\) chung
Do đó: ΔCED\(\sim\)ΔCAB(c-g-c)
Trên BC lấy điểm E sao cho \(AB=BE\)
Dễ dàng chứng minh được \(\Delta ABD=\Delta EBD\left(c.g.c\right)\)
Do đó \(\widehat{BAC}=\widehat{BED}=80^0\)
Mà \(\widehat{BED}\) là góc ngoài tam giác DEC
\(\Rightarrow\widehat{BED}=\widehat{EDC}+\widehat{BCA}\\ \Rightarrow80^0=\widehat{EDC}+40^0\\ \Rightarrow\widehat{EDC}=40^0\Rightarrow\widehat{EDC}=\widehat{ECD}\left(=40^0\right)\\ \Rightarrow\Delta EDC.cân.tại.E\Rightarrow DE=EC\)
Vậy \(AB+AD=BE+EC=BC\)