K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2021

\(4,\\ 2.B=\sqrt{x}-1+\dfrac{2-2\sqrt{x}}{\sqrt{x}}\left(x>0\right)\\ B=\dfrac{x-\sqrt{x}+2-2\sqrt{x}}{\sqrt{x}}=\dfrac{x-3\sqrt{x}+2}{\sqrt{x}}\)

\(3.x=\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\left(3+\sqrt{2}\right)+\left(3-\sqrt{2}\right)=6\)

Thay vào B, ta được \(B=\dfrac{6-3\sqrt{6}+2}{\sqrt{6}}=\dfrac{6\sqrt{6}-18+2\sqrt{6}}{6}=\dfrac{4\sqrt{6}-9}{3}\)

\(4.B=0\Leftrightarrow\dfrac{x-3\sqrt{x}+2}{\sqrt{x}}=0\Leftrightarrow x-3\sqrt{x}+2=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

\(7.B\in Z\Leftrightarrow\dfrac{x-3\sqrt{x}+2}{\sqrt{x}}\in Z\Leftrightarrow\sqrt{x}-3+\dfrac{2}{\sqrt{x}}\in Z\\ \Leftrightarrow\dfrac{2}{\sqrt{x}}\in Z\Leftrightarrow\sqrt{x}\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow x\in\left\{1;4\right\}\left(\sqrt{x}>0\right)\)

 

22 tháng 3 2022

c) \(\left(\dfrac{1}{2}\cdot x+\dfrac{1}{4}\right)\cdot\left(2x-\dfrac{1}{3}\right)=0\)

 \(\dfrac{1}{2}\cdot x+\dfrac{1}{4}=0\)

     \(\dfrac{1}{2}\cdot x=0-\dfrac{1}{4}\)

     \(\dfrac{1}{2}\cdot x=-\dfrac{1}{4}\)

          \(x=-\dfrac{1}{4}\div\dfrac{1}{2}\)

          \(x=-\dfrac{1}{2}\)

\(2x-\dfrac{1}{3}=0\)

\(2x=0+\dfrac{1}{3}\)

\(2x=\dfrac{1}{3}\)

  \(x=\dfrac{1}{3}\div2\)

  \(x=\dfrac{1}{6}\)

\(\Rightarrow\) \(x=\) {\(-\dfrac{1}{2};\dfrac{1}{6}\)}

a) Ta có: \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)

\(=\dfrac{1}{2}\cdot4\sqrt{3}-2\cdot5\sqrt{3}-\sqrt{3}+5\cdot\dfrac{2}{\sqrt{3}}\)

\(=-9\sqrt{3}+\dfrac{10}{\sqrt{3}}\)

\(=\dfrac{-27+10}{\sqrt{3}}=\dfrac{-17\sqrt{3}}{3}\)

13 tháng 11 2021

2: Thay x=1 và y=-4 vào (d), ta được:

2m+2=-4

hay m=-3

a: Xét ΔSBM và ΔSNB có 

\(\widehat{SBM}=\widehat{SNB}\)

\(\widehat{BSM}\) chung

Do đó: ΔSBM\(\sim\)ΔSNB

Suy ra: SB/SN=SM/SB

hay \(SB^2=SM\cdot SN\)

b: Xét (O) có

SA là tiếp tuyến

SB là tiếp tuyến

Do đó: SA=SB

mà OA=OB

nên SO là đường trung trực của AB

=>SO⊥AB

Xét ΔOBS vuông tại B có BH là đường cao

nên \(SH\cdot SO=SB^2=SM\cdot SN\)

22 tháng 10 2023

a: Xét tứ giác AECF có

AE//CF(AB//CD)

AE=CF

Do đó: AECF là hình bình hành

b: AE+EB=AB

CF+FD=CD

mà AE=CF và AB=CD

nên BE=DF

Xét tứ giác BEDF có

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

=>DE=BF

c:

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔAIC có

D,O lần lượt là trung điểm của AI,AC

=>DO là đường trung bình

=>DO//CI

d: AECF là hình bình hành

=>AC cắt EF tại trung điểm của mỗi đường

mà O là trung điểm của AC

nên O là trung điểm của EF

=>AC,EF,BD đồng quy(do cùng đi qua O)

15 tháng 10 2023

a: Xét tứ giác BHCD có

M là trung điểm chung của BC và HD

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

=>BH//CDvà BD//CH

BH//CD

AC vuông góc BH

Do đó: CA vuông góc CD

=>ΔCAD vuông tại C

CH//BD

CH vuông góc AB

Do đó: BD vuông góc AB

=>ΔABD vuông tại B

c: \(\widehat{ABD}=\widehat{ACD}=90^0\)

=>ABDC là tứ giác nội tiếp đường tròn đường kính AD

=>ABDC nội tiếp (I)

=>IA=IB=ID=IC

15 tháng 10 2023

Bạn ơi vẽ hình giúp với

 

5 tháng 12 2021

\(R_{tđ}=\dfrac{R_1\cdot R_2}{R_1+R_2}=\dfrac{24\cdot12}{24+12}=8\Omega\)

\(I=\dfrac{U}{R}=\dfrac{12}{8}=1,5A\)

\(P=\dfrac{U^2}{R}=\dfrac{12^2}{8}=18W\)

\(Q_{tỏa1}=A_1=U_1\cdot I_1\cdot t=12\cdot\dfrac{12}{24}\cdot1\cdot3600=21600J\)

\(Q_{tỏa2}=A_2=U_2\cdot I_2\cdot t=12\cdot\dfrac{12}{12}\cdot1\cdot3600=43200J\)

5 tháng 12 2021

Bạn có thể giúp mình làm luôn câu c, d được không ạ