\(\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3-2\sqrt{2}}+\sqrt{9+4\sqrt{2}}+\sqrt{12-8\sqrt{2}}}\)
CÁC BẠN GIÚP MÌNH TÌM GIÁ TRỊ NHÉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\dfrac{\sqrt{10}-\sqrt{5}+2\sqrt{2}+\sqrt{5}-\sqrt{10}-1}{2\sqrt{2}+2+2\sqrt{2}-1+2\sqrt{2}+2}\)
\(=\dfrac{2\sqrt{2}-1}{6\sqrt{2}+3}=\dfrac{9-4\sqrt{2}}{21}\)
\(B=\dfrac{40}{6+2\sqrt{5}+\sqrt{4\sqrt{5}+4}}\)
\(=\dfrac{40}{\left(\sqrt{5}+1\right)^2+2\sqrt{\sqrt{5}+1}}\)
\(=\dfrac{40}{\sqrt{\sqrt{5}+1}\left(\sqrt{\sqrt{5}+1}+2\right)}\)
\(=\dfrac{40\sqrt{\sqrt{5}-1}}{2\left(\sqrt{\sqrt{5}+1}+2\right)}\)
\(=\dfrac{20\left(\sqrt{\sqrt{5}-1}\right)\left(\sqrt{\sqrt{5}+1}-2\right)}{\sqrt{5}+1-4}\)
\(=\dfrac{20\left(\sqrt{\sqrt{5}-1}\right)\left(\sqrt{\sqrt{5}+1}-2\right)}{-3+\sqrt{5}}\)
\(=-5\left(3+\sqrt{5}\right)\left(\sqrt{\sqrt{5}-1}\right)\left(\sqrt{\sqrt{5}+1}-2\right)\)
a: \(A=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b: \(\sqrt{2}\cdot B=\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)
\(\Leftrightarrow B\sqrt{2}=3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}\)
\(\Leftrightarrow B\sqrt{2}=4\sqrt{5}\)
hay \(B=2\sqrt{10}\)
d: \(D\sqrt{2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5}-2\sqrt{5}+2=2\)
hay \(D=\sqrt{2}\)
1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)
3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)
5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)
7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)
\(\frac{9+4\sqrt{2}}{21}\)
cho P = \(\frac{\sqrt{x}+2}{\sqrt{x}+1}\) , Tìm GTLN của P