K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2018

Tên Trung Quốc cơ á

23 tháng 9 2019

\(\sqrt{2\left(x-3\right)^2+16}\ge4\)

\(\sqrt{4\left(x-3\right)^2+4}\ge2\)

\(\Rightarrow VT\ge6\)

mà \(-x^2+6x-3=-\left(x-3\right)^2+6\le6\)

MÀ VT=VP\(\Rightarrow x=3\)

16 tháng 10 2021

\(ĐK:x\in R\)

Đặt \(x^2-2x=a\), PTTT:

\(-a+\sqrt{6a+7}=0\\ \Leftrightarrow\sqrt{6a+7}=a\\ \Leftrightarrow a^2-6a-7=0\\ \Leftrightarrow\left[{}\begin{matrix}a=7\\a=-1\left(loại.do.a=\sqrt{6a+7}\ge0\right)\end{matrix}\right.\\ \Leftrightarrow a=7\\ \Leftrightarrow x^2-2x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1+2\sqrt{2}\\x=1-2\sqrt{2}\end{matrix}\right.\)

 

NV
11 tháng 12 2018

Ta có

\(\left\{{}\begin{matrix}\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\\\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=2\end{matrix}\right.\) \(\forall x\)

\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\) \(\forall x\)

Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\) \(\forall x\)

\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4}=2\\3-\left(x-1\right)^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy pt có nghiệm duy nhất \(x=1\)

28 tháng 9 2015

1)ĐK : ........

đặt \(\sqrt{x+5}=a;\sqrt{x+2=b}\)  ta có \(a^2-b^2=x+5-x-2=3\)

pt <=> \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

=> \(\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(1+ab\right)=0\)

=> \(\left(a-b\right)\left(a+b-ab-1\right)=0\)

=> \(\left(a-b\right)\left(a-1\right)\left(1-b\right)=0\)

đến đây bạn tự giải nha 

28 tháng 9 2015

2) xét 

VT = \(\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\ge\sqrt{1}+\sqrt{9}=4\) 

Dấu = xảy ra khi x =3

\(-5-x^2+6x=-\left(x-3\right)^2+4\le4\) 

Dấu bằng xảy ra tại x =  3 

=> VT = VP = 4 tại x  = 3 

Vậy x = 3 là n* duy nhất 

15 tháng 10 2021