K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [B, A] Đoạn thẳng i: Đoạn thẳng [C, A] Đoạn thẳng q: Đoạn thẳng [B, H] Đoạn thẳng r: Đoạn thẳng [D, E] Đoạn thẳng s: Đoạn thẳng [H, E] Đoạn thẳng t: Đoạn thẳng [F, G] Đoạn thẳng a: Đoạn thẳng [F, K] Đoạn thẳng b: Đoạn thẳng [A, F] Đoạn thẳng c: Đoạn thẳng [K, C] Đoạn thẳng d: Đoạn thẳng [H, K] Đoạn thẳng e: Đoạn thẳng [H, D] Đoạn thẳng f_1: Đoạn thẳng [K, D] Đoạn thẳng g_1: Đoạn thẳng [I, J] B = (-0.92, 2.22) B = (-0.92, 2.22) B = (-0.92, 2.22) C = (7.22, 2.18) C = (7.22, 2.18) C = (7.22, 2.18) Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm D: Điểm trên f Điểm D: Điểm trên f Điểm D: Điểm trên f Điểm F: Giao điểm đường của j, k Điểm F: Giao điểm đường của j, k Điểm F: Giao điểm đường của j, k Điểm E: Giao điểm đường của j, h Điểm E: Giao điểm đường của j, h Điểm E: Giao điểm đường của j, h Điểm H: Giao điểm đường của l, m Điểm H: Giao điểm đường của l, m Điểm H: Giao điểm đường của l, m Điểm K: Giao điểm đường của n, p Điểm K: Giao điểm đường của n, p Điểm K: Giao điểm đường của n, p Điểm I: Giao điểm đường của h, e Điểm I: Giao điểm đường của h, e Điểm I: Giao điểm đường của h, e Điểm J: Giao điểm đường của i, f_1 Điểm J: Giao điểm đường của i, f_1 Điểm J: Giao điểm đường của i, f_1 Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1

a) Ta thấy \(\widehat{BDI}=\widehat{BCA}\left(=\widehat{IBD}\right)\), suy ra ID // AJ

Tương tự  DJ // IA. Vậy tứ giác AIDJ là hình bình hành hay AJ song song và bằng ID.

Từ đó suy ra AJ cũng song song và bằng HI hay AHIJ là hình bình hành. Vậy thì HA // IJ (1)

Xét tam giác HDK có IJ là đường trung bình nên HK // IJ (2)

Từ (1) và (2) suy ra H, A, K thẳng hàng.

b) Ta thấy do AHIJ là hình bình hành nên IJ = AH. Lại có \(IJ=\frac{HK}{2}\Rightarrow HA=\frac{HK}{2}\)

Vậy A là trung điểm của HK.

c) Do AIDJ là hình bình hành nên trung điểm IJ cũng là trung điểm AD.

Vậy khi D thay đổi, M luôn là trung điểm AD. Nói cách khác, khi M thay đổi M sẽ di chuyển trên đường trung bình ứng với đáy BC của tam giác ABC.

29 tháng 10 2021

a, Gọi I,J là tâm của hcn BDEH và CDFK

Do đó \(BI=ID\Rightarrow\widehat{BID}=180^0-2\widehat{IBD}\) (\(\Delta BID\) cân tại I)

Mà \(\Delta ABC\) cân tại A nên \(\widehat{BAC}=180^0-2\widehat{IBD}\)

Do đó \(\widehat{BID}=\widehat{BAC}\) mà 2 góc này ở vị trí đv nên ID//AJ

Cmtt ta được \(\widehat{DJC}=\widehat{BAC}\left(=180^0-2\widehat{ACB}\right)\) mà 2 góc này ở vị trí slt nên AI//DJ

Do đó IAJD là hbh nên \(AI=DJ=JK\) (J là trung điểm DK)

Và AI//DJ hay AI//JK

\(\Rightarrow AIJK\) là hbh

\(\Rightarrow IJ=AK\) và IJ//AK

Mà IJ là đtb tg HDK nên IJ//HK và \(IJ=\dfrac{1}{2}HK\)

\(\Rightarrow\) HK trùng AK hay H,A,K thẳng hàng và \(AK=\dfrac{1}{2}HK\)

Do đó A là trung điểm HK

Vậy trung điểm A của HK là điểm cố định ko phụ thuộc vào vị trí điểm D

b, Vì I,M là trung điểm HD,AD nên IM là đtb tg HAD 

Do đó IM//AH

Mà IJ//AH nên IM trùng IJ hay I,M,J thẳng hàng

c, Xét tam giác DHK có:

HJ là trung tuyến (J là trung điểm DK)

DA là trung tuyến (A là trung điểm HK)

KI là trung tuyến (I là trung điểm DH)

Do đó AD,HJ,KI đồng quy tại trọng tâm tam giác DHK

d, Do AIDJ là hbh nên M là trung điểm AD cũng là trung điểm IJ

Gọi P là trung điểm BC thì AP cũng là đường cao và AP ko đổi

Kẻ MN⊥BC thì MN//AP

Do đó MN là đtb tg DAP

\(\Rightarrow MN=\dfrac{1}{2}AP\) và MN ko đổi

Vậy khi D thay đổi thì M chạy trên đg thẳng //BC và các BC 1 khoảng bằng \(\dfrac{1}{2}AP\) (không đổi)

29 tháng 10 2021

Hình vẽ: