Tìm x, y, z thuộc N* biết x/7+y/11+z/13 = 946053/999999
thánh nào giỏi làm bài này đi
p/s ko làm mò
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x/7 + y/11 + z/13 = 0,(946053)
=> x/7 + y/11 + z/13 = 0,(000001) . 946053
=> 11.13.x / 7.11.13 + 7.13.y / 7.11.13 + 7.11.z / 7.11.13 = 946053/999999 = 946053/7.11.13.999
=> 11.13.x + 7.13.y + 7.11.z = 946053/999 = 947
=> 7.(13.y + 11.z) = 947 - 143.x
Vì 7.(13.y + 11.z) > 0 do x, y thuộc N* nên 947 - 143.x > 0
hay 143.x < 947 hay x < hoặc = 6
=> x = {1; 2; 3; 4; 5; 6}
Thử với từng giá trị của x ta thấy chỉ có x = 3 thỏa mãn (947 - 143.7) chia hết cho 7
Với x = 3 thì 13y + 11z = 74 => 11z = 74 - 13y
Vì 11z > 0 do thuộc N* nên 74 - 13y > 0
hay 13y < 74 hay y < 6
=> y = {1; 2; 3; 4; 5}
Thử với từng trường hợp của y ta thấy chỉ có y = 4 thỏa mãn (74 - 13y) chia hết cho 11
=> z = (74 - 13 . 4) : 11 = 2
Vậy x = 3; y = 4; z = 2
Tham khảo nhé !!!
Câu hỏi của ❃๖ۣۜY๖ۣۜi๖ۣۜn ⓛ ⓞ ⓥ ⓔ ♡
x/7 = y/11 = z/13 = 0,(946053) = 946053/999999 = 947/1001
=> x = 947/1001 . 7 = 947/143
y = 947/1001 . 11 = 947/91
z = 947/1001 . 13 = 947/7
tick nha :)))
bn ơi mình nhầm z phải là 947/77 bn nhé
mk viết thiếu số 7
\(\frac{x}{7}+\frac{y}{11}+\frac{z}{13}=\frac{947}{1001}\)
\(\Leftrightarrow143x+91y+77z=947=143.3+91.4+77.2\)
Vậy x = 3 ; y = 4 và z = 2
đấy là mò làm thế bà ra từ 80 đời rồi cháu ạ