K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

a ) CM : \(a^4+b^4\ge a^3b+b^3a\)

Giả sử điều cần c/m là đúng

\(\Rightarrow a^4+b^4-a^3b-b^3a\ge0\)

\(\Rightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Rightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)

\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Ta có : \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\a^2+ab+b^2=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\end{matrix}\right.\)

\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Rightarrow a^4+b^4-a^3b-b^3a\ge0\)

\(\Rightarrow a^4+b^4\ge a^3b+b^3a\)

\(\Rightarrow2\left(a^4+b^4\right)\ge a^4+a^3b+b^4+b^3a\)

\(\Rightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

\(\left(đpcm\right)\)

9 tháng 9 2018

b ) \(\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)

\(=a^4+a^3b+a^3c+b^3a+b^4+b^3c+c^3a+c^3b+c^4\)

\(=\left(a^4+b^4+c^4\right)+\left(a^3b+b^3a\right)+\left(b^3c+c^3b\right)+\left(a^3c+c^3a\right)\)

CMTT như a ) : \(\left\{{}\begin{matrix}a^4+b^4\ge a^3b+b^3a\\b^4+c^4\ge b^3c+c^3b\\a^4+c^4\ge a^3c+c^3a\end{matrix}\right.\)

\(\Rightarrow2\left(a^4+b^4+c^4\right)\ge a^3b+b^3a+b^3c+c^3b+a^3c+c^3a\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge a^4+b^4+c^4+a^3b+b^3a+b^3c+c^3b+a^3c+c^3a\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\left(đpcm\right)\)

16 tháng 5 2020

BĐT tương đương với :

\(3a^4+3b^4+3c^4-\left(a^4+a^3b+a^3c+b^4+ab^3+b^3c+ac^3+bc^3+c^4\right)\ge0\)

\(\Leftrightarrow\left(a^4+b^4-a^3b-ab^3\right)+\left(b^4+c^4-b^3c-bc^3\right)+\left(a^4+c^4-a^3c-ac^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)+\left(b-c\right)^2\left(b^2+bc+c^2\right)+\left(a-c\right)^2\left(a^2+ac+c^2\right)\ge0\)

28 tháng 5 2020

BĐT cần chứng minh tương đương với:

\(3a^4+3b^4+3c^4\ge a^4+b^4+c^4+ab^3+bc^3+ca^3+a^3b+b^3c+c^3a\)

\(\Leftrightarrow2a^4+2b^4+2c^4-ab^3-bc^3-ca^3-a^3b-b^3c-c^3a\ge0\)

Theo AM - GM ta dễ có:

\(a^4+a^4+a^4+b^4\ge4\sqrt[4]{a^{12}b^4}=4a^3b\)

\(b^4+b^4+b^4+c^4\ge4\sqrt[4]{b^{12}c^4}=4b^3c\)

\(c^4+c^4+c^4+a^4\ge4\sqrt[4]{c^{12}a^4}=4c^3a\)

Cộng vế theo vế ta có đpcm

16 tháng 4 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

wow, chắc xu học lớp 9

(a+b+c)(a3+b3+c3)

=a4+a3b+a3c+ab3+b4+b3c+ac3+bc3+c4

=a4+b4+c4+(a3b+ab3)+(bc3+b3c)+(c3a+ca3)

=a4+b4+c4+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)

=(a4+b4+c4)+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)

P/s đến đây bạn áp đụng bđt thức bunhi a là ra

(a+b+c) (a3+b3+c3)

=a4+a3b+a3c+ab3+b4+b3c+ac3+bc3+c4

=a4+b4+c4+(a3b+ab3)+(bc3+b3c)+(c3a+ca3)

=a4+b4+c4+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)

=(a4+b4+c4)+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)

22 tháng 1 2020

Đặt BĐT cần c/m là A

Dự đoán đẳng thức xảy ra khi a = b = c

Áp dụng BĐT Cauchy cho 3 số không âm:

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\)

\(\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(a+c\right)}.\frac{a+b}{8}.\frac{a+c}{8}}=\frac{3a}{4}\)

\(\frac{b^3}{\left(b+c\right)\left(b+a\right)}+\frac{b+c}{8}+\frac{b+a}{8}\)

\(\ge3\sqrt[3]{\frac{b^3}{\left(b+c\right)\left(b+a\right)}.\frac{b+c}{8}.\frac{b+a}{8}}=\frac{3b}{4}\)

\(\frac{c^3}{\left(c+a\right)\left(c+b\right)}+\frac{c+a}{8}+\frac{c+b}{8}\)

\(\ge3\sqrt[3]{\frac{c^3}{\left(c+a\right)\left(c+b\right)}.\frac{c+a}{8}.\frac{c+b}{8}}=\frac{3c}{4}\)

Cộng từng vế của các BĐT trên, ta được:

\(A+\frac{2\left(a+b+c\right)}{4}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Rightarrow A\ge\frac{3}{4}\)

(Dấu "="\(\Leftrightarrow a=b=c\))

5 tháng 12 2018

\(VT\ge\sum\left(\dfrac{a^3}{2a+b+c}\right)=\sum\left(\dfrac{a^3}{\sum a+a}\right)=\sum\dfrac{a^3}{3+a}\)

Ta có BĐT phụ :

\(\dfrac{a^3}{a+3}\ge\dfrac{11a-7}{16}\)(*)

\(\Leftrightarrow\left(16a+21\right)\left(a-1\right)^2\ge0\) (luôn đúng với mọi a>0)

Áp dụng BĐT (*) ta có :

\(\sum\dfrac{a^3}{3+a}\ge\dfrac{11\sum a-21}{16}=\dfrac{33-21}{16}=\dfrac{12}{16}=\dfrac{3}{4}\)

5 tháng 12 2018

nhầm rồi , mình sorry , \(VT\ge\sum\left(\dfrac{2a^3}{2a+b+c}\right)=\sum\left(\dfrac{2a^3}{3+a}\right)\)

bạn chọn BĐT phụ là :

\(\dfrac{2a^3}{a+3}\ge\dfrac{11a-7}{8}\)

AH
Akai Haruma
Giáo viên
24 tháng 12 2018

Lời giải:

Áp dụng BĐT AM-GM:

\(\frac{a^4}{(a+2)(b+2)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\geq 4\sqrt[4]{\frac{a^4}{27.27.9}}=\frac{4a}{9}\)

\(\frac{b^4}{(b+2)(c+2)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\geq \frac{4b}{9}\)

\(\frac{c^4}{(c+2)(a+2)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\geq \frac{4c}{9}\)

Cộng theo vế và rút gọn:

\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}+\frac{2(a+b+c)}{27}+\frac{7}{9}\geq\frac{4(a+b+c)}{9}\)

\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}\geq \frac{10(a+b+c)}{27}-\frac{7}{9}=\frac{30}{27}-\frac{7}{9}=\frac{1}{3}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

25 tháng 12 2018

AM-GM là gì z bn

16 tháng 7 2017

Bạn xem lời giải ở đây nhé https://olm.vn/hoi-dap/question/960694.html

16 tháng 7 2017

Another way CLICK HERE

AH
Akai Haruma
Giáo viên
14 tháng 5 2018

Lời giải:

Áp dụng BĐT Cauchy ta có:

\(\frac{a^4}{b^3(c+a)}+\frac{c+a}{4a}+\frac{1}{2}\geq 3\sqrt[3]{\frac{a^3}{8b^3}}=\frac{3a}{2b}\)

\(\frac{b^4}{c^3(a+b)}+\frac{a+b}{4b}+\frac{1}{2}\geq 3\sqrt[3]{\frac{b^3}{8c^3}}=\frac{3b}{2c}\)

\(\frac{c^4}{a^3(b+c)}+\frac{b+c}{4c}+\frac{1}{2}\geq 3\sqrt[3]{\frac{c^3}{8a^3}}=\frac{3c}{2a}\)

Cộng theo vế và rút gọn:

\(\Rightarrow \frac{a^4}{b^3(c+a)}+\frac{b^4}{c^3(a+b)}+\frac{c^4}{a^3(b+c)}+\frac{1}{4}(\frac{a}{b}+\frac{b}{c}+\frac{c}{a})+\frac{9}{4}\geq \frac{3}{2}(\frac{a}{b}+\frac{b}{c}+\frac{c}{a})\)

\(\Rightarrow \frac{a^4}{b^3(c+a)}+\frac{b^4}{c^3(a+b)}+\frac{c^4}{a^3(b+c)}\geq \frac{5}{4}(\frac{a}{b}+\frac{b}{c}+\frac{c}{a})-\frac{9}{4}\geq \frac{5}{4}.3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}-\frac{9}{4}\)

hay \( \frac{a^4}{b^3(c+a)}+\frac{b^4}{c^3(a+b)}+\frac{c^4}{a^3(b+c)}\geq \frac{5}{4}.3-\frac{9}{4}=\frac{3}{2}\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\)

AH
Akai Haruma
Giáo viên
14 tháng 5 2018

Cách khác:

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{(\frac{a^2}{b})^2}{b(c+a)}+\frac{(\frac{b^2}{c})^2}{c(a+b)}+\frac{(\frac{c^2}{a})^2}{a(b+c)}\geq \frac{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2}{b(c+a)+c(a+b)+a(b+c)}\)

Tiếp tục áp dụng BĐT Cauchy-Schwarz:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq \frac{(a+b+c)^2}{b+c+a}=a+b+c\)

\(\Rightarrow \left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2\geq (a+b+c)^2\)

Do đó: \(\text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)}\)

Theo hệ quả quen thuộc của BĐT Cauchy: \((a+b+c)^2\geq 3(ab+bc+ac)\)

Suy ra: \(\text{VT}\geq \frac{3(ab+bc+ac)}{2(ab+bc+ac)}=\frac{3}{2}\) (đpcm)