Thực hiện phép tính:
a, 2x^3-x^2+5x):x
b,(3x^4-2x^3+x^2):(-2x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,=6x^2+6x\\ b,=15x^3-10x^2+5x\\ c,=6x^3+12x^2\\ d,=15x^4+20x^3-5x^2\\ e,=2x^2+3x-2x-3=2x^2+x-3\\ f,=3x^2-5x+6x-10=3x^2+x-10\)
Bài 2:
\(a,\Leftrightarrow3x^2+3x-3x^2=6\\ \Leftrightarrow3x=6\Leftrightarrow x=2\\ b,\Leftrightarrow6x^2+3x-6x^2+9x-2x-3=10\\ \Leftrightarrow10x=13\Leftrightarrow x=\dfrac{13}{10}\)
Tham khảo
a)
-7x2(3x - 4y)
= -7x2.3x + 7x2ư.4y
= -21x2 + 28x2y
b)
(x - 3)(5x - 4)
= x.5x - x.4 - 3.5x + 3.4
= 5x2 - 4x - 15x + 12
= 5x2 - 19x + 12
c)
(2x - 1)2 = 4x2 - 4x + 1
d)
(x + 3)(x - 3) = x2 - 32 = x2 - 9
\(a,=-21x^3+28x^2y\\ b,=5x^2-4x-15x+12=5x^2-19x+12\\ c,=4x^2-4x+1\\ d,=49-x^2\)
a: =1/2x^3*x^2-1/2x^3*6x-1/2x^3*10
=1/2x^5-3x^4-5x^3
b: =-3x^2*5x^3+3x^2*4x^2-3x^2*3x+3x^2*3x
=-15x^5+12x^4-9x^3+9x^2
c: \(=3x\cdot5x^2-3x\cdot2x-3x=15x^3-6x^2-3x\)
d: \(=\dfrac{1}{2}x^2y\cdot2x^3-\dfrac{1}{2}x^2y\cdot\dfrac{2}{5}xy^2-\dfrac{1}{2}x^2y=x^5y-\dfrac{1}{5}x^3y^3-\dfrac{1}{2}x^2y\)
\(1,\\ a,=2x^2+2x\\ b,=x^2+4x+3-4=x^2+4x-1\\ c,=x^2+4x+4+3x-5=x^2+7x-1\\ 2,\\ a,=3\left(x+y\right)\\ b,=\left(x-3\right)^2\\ c,=7\left(x+y\right)\\ 3,\\ \Leftrightarrow\left(x-1\right)\left(3x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{3}\end{matrix}\right.\)
a: \(=\dfrac{2x-2x+y}{2\left(2x-y\right)}=\dfrac{y}{2\left(2x-y\right)}\)
b: \(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{6x+2-x^2-x}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^2+5x+2}{2\left(x-1\right)\left(x+1\right)}\)
c: \(=\dfrac{1}{x+2}+\dfrac{x+8}{3x\left(x+2\right)}\)
\(=\dfrac{3x+x+8}{3x\left(x+2\right)}=\dfrac{4x+8}{3x\left(x+2\right)}=\dfrac{4}{3x}\)
d: \(=\dfrac{4x+6-2x^2+3x+2x+1}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\dfrac{-2x^2+9x+7}{\left(2x-3\right)\left(2x+3\right)}\)
a: \(=2x^3:\dfrac{-3}{2}x+4x:\dfrac{3}{2}x-5:\dfrac{3}{2}\)
=-4/3x^2+8/3-10/3
=-4/3x^2-2/3
d: \(\dfrac{3x^3-5x+2}{x-3}=\dfrac{3x^3-9x^2+9x^2-27x+22x-66+68}{x-3}\)
\(=3x^2+9x+22+\dfrac{68}{x-3}\)
a, \(\left(2x^3-x^2+5x\right):x=2x^2-x+5\)
b, \(\left(3x^4-2x^3+x^2\right):\left(-2x\right)=-\frac{3}{2}x^3+x^2-\frac{1}{2}x\)
\(\left(2x^3-x^2+5x\right):5=\left(2x^3:x\right)+\left(-x^2:x\right)+\left(5x:x\right)=2x^2-x+5\)
\(\left(3x^4-2x^3+x^2\right):\left(-2x\right)=[3x^4:\left(-2x\right)]+[-2x^3:\left(-2x\right)]+[x^2:\left(-2x\right)]=-\frac{3}{2}x^3+x^2-\frac{x}{2}\)