K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2015

S = 1 + 3 + 32 + ... + 399

   = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 398 + 399 )

   = 1.4 + 32(1+3) + ... + 398(1+3)

   = 4.(1+32+...+398) chia hết cho 4

29 tháng 10 2015

=> S = 1 + 31 + 32 + ........ + 399

= ( 1 + 31 ) + ( 32 + 33 ) + .......... + ( 398 + 399 )

= 4 + 32( 1 + 31 ) + ......... + 398( 1 + 31 )

= 4 . 32 . 4 + .......... + 398 . 4

= 4( 1 + ............ + 398 ) chia hết cho 4

=> ĐPCM

2 tháng 9 2016

1) S = 1 + 2 + 2^2 + ... + 2^99 ( có 100 số; 100 chia hết cho 4)

S = (1 + 2) + (2^2 + 2^3) + ... + (2^98 + 2^99)

S = 3 + 2^2.(1 + 2) + ... + 2^98.(1 + 2)

S = 3 + 2^2.3 + ... + 2^98.3

S = 3.(1 + 2^2 + ... + 2^98) chia hết cho 3 ( đpcm)

3) lm tươg tự câu 1, nhóm 4 số 

3) Để thừa ra số 1 đầu tin, típ theo nhóm 3 số 

KL: S chia 7 dư 1

23 tháng 9 2015

S = 3100 - 1

24 tháng 8

Ad cho xin ý kiến vs ạ

5 tháng 2 2016

a,S=(1-3+32-33)+......+(396-397+398-399)

S=(-20)+...........+396.(1-3+32-33)

S=(-20)+..........+396.(-20)

S=(1+34+...........+396).(-20) chia hết cho (-20){đpcm}

b,3S=3-32+33-34+...........+399-3100

3S+S=4S=1-3100

S=\(\frac{1-3^{100}}{4}\)

Mà S chia hết cho (-20) nên S chia hết cho 4

=>1-3100 chia hết cho 4

Do 1 chia 4 dư 1 nên 3100 chia 4 dư 1

=>đpcm

24 tháng 10 2015

góp lại 2 số đầu là ra 

tick nhé bạn thân

24 tháng 10 2015

S=(3^1+3^2+3^3)+(3^4+3^5+3^6)+...+(3^2000+3^2001+3^2002)

S=3.(1+3+3^2)+3^4.(1+3+3^2)+...+3^2000.(1+3+3^2)

S=3.14+3^4.14+...+3^2000.14

S=(3+3^4+...+3^2000).14

=> S chia hết cho 7

14 tháng 4 2020

S=2+22+23+24+....+299+2100

  =(2+22+23) + ( 24+25+26) + ......+ ( 288+299+2100)

  = 2.14+24.14+....+288.14

  = 14.( 2+24+....+288) Chia hết cho 14

Vậy S chia hết cho 14