cho: S= \(3^0+3^1+3^2+...+3^{99}\)
CMR: S chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) S = 1 + 2 + 2^2 + ... + 2^99 ( có 100 số; 100 chia hết cho 4)
S = (1 + 2) + (2^2 + 2^3) + ... + (2^98 + 2^99)
S = 3 + 2^2.(1 + 2) + ... + 2^98.(1 + 2)
S = 3 + 2^2.3 + ... + 2^98.3
S = 3.(1 + 2^2 + ... + 2^98) chia hết cho 3 ( đpcm)
3) lm tươg tự câu 1, nhóm 4 số
3) Để thừa ra số 1 đầu tin, típ theo nhóm 3 số
KL: S chia 7 dư 1
a,S=(1-3+32-33)+......+(396-397+398-399)
S=(-20)+...........+396.(1-3+32-33)
S=(-20)+..........+396.(-20)
S=(1+34+...........+396).(-20) chia hết cho (-20){đpcm}
b,3S=3-32+33-34+...........+399-3100
3S+S=4S=1-3100
S=\(\frac{1-3^{100}}{4}\)
Mà S chia hết cho (-20) nên S chia hết cho 4
=>1-3100 chia hết cho 4
Do 1 chia 4 dư 1 nên 3100 chia 4 dư 1
=>đpcm
S=(3^1+3^2+3^3)+(3^4+3^5+3^6)+...+(3^2000+3^2001+3^2002)
S=3.(1+3+3^2)+3^4.(1+3+3^2)+...+3^2000.(1+3+3^2)
S=3.14+3^4.14+...+3^2000.14
S=(3+3^4+...+3^2000).14
=> S chia hết cho 7
S=2+22+23+24+....+299+2100
=(2+22+23) + ( 24+25+26) + ......+ ( 288+299+2100)
= 2.14+24.14+....+288.14
= 14.( 2+24+....+288) Chia hết cho 14
Vậy S chia hết cho 14
S = 1 + 3 + 32 + ... + 399
= ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 398 + 399 )
= 1.4 + 32(1+3) + ... + 398(1+3)
= 4.(1+32+...+398) chia hết cho 4
=> S = 1 + 31 + 32 + ........ + 399
= ( 1 + 31 ) + ( 32 + 33 ) + .......... + ( 398 + 399 )
= 4 + 32( 1 + 31 ) + ......... + 398( 1 + 31 )
= 4 . 32 . 4 + .......... + 398 . 4
= 4( 1 + ............ + 398 ) chia hết cho 4
=> ĐPCM