a) Sắp xếp theo thứ tự tăng dần: \(\sin47^o13;\cos72^o20;\sin55^o25;\cos44^o30\)
b) Tính: \(2017.\sin^223^o+\sin^237^o+\sin^253^o+2017.\sin^267^o\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Gợi ý: Bài này có 2 cách làm. Cách 1 là sử dụng máy tính. Cách 2 là sử dụng tính chất lượng giác của hai góc phụ nhau để đưa về cùng một tỉ số lượng giác rồi so sánh. Cách 2 nhanh hơn.)
a) Ta có:
sin 78 ° = cos 12 ° ; sin 47 ° = cos 43 ° V ì 12 ° < 14 ° < 43 ° < 87 ° n ê n cos 12 ° > cos 14 ° > cos 43 ° > cos 87 ° S u y r a : cos 87 ° < sin 47 ° < cos 14 ° < sin 78 ° b ) T a c ó : c o t g 25 ° = t g 65 ° ; c o t g 38 ° = t g 52 ° . V ậ y : c o t g 38 ° < t g 62 ° < c o t g 25 ° < t g 73 °
a) cos14∘=sin76∘;cos87∘=sin3∘.cos14∘=sin76∘;cos87∘=sin3∘..
Vì sin3∘<sin47∘<sin76∘<sin78∘sin3∘<sin47∘<sin76∘<sin78∘ nên
cos78∘<cos76∘<cos47∘<cos3∘cos78∘<cos76∘<cos47∘<cos3∘.
b) cotg25∘=tg65∘;cotg38∘=tg52∘cotg25∘=tg65∘;cotg38∘=tg52∘.
Vì tg52∘<tg62∘<tg65∘<tg73∘tg52∘<tg62∘<tg65∘<tg73∘;
nên cotg38∘<tg62∘<cotg25∘<tg73∘cotg38∘<tg62∘<cotg25∘<tg73∘.
Nhận xét: Để so sánh các tỉ số lượng giác sin và côsin của các góc, ta đưa về so sánh cùng một loại tỉ số lượng giác (ví dụ cùng là sin của các góc). Tương tự như vậy, để so sánh các tỉ số lượng giác tang và côtang của các góc, ta đưa về so sánh cùng một loại tỉ số lượng giác (ví dụ cùng là tang của các góc).
a) cos14∘=sin76∘;cos87∘=sin3∘..
Vì sin3∘<sin47∘<sin76∘<sin78∘ nên
cos78∘<cos76∘<cos47∘<cos3∘.
b) cotg25∘=tg65∘;cotg38∘=tg52∘.
Vì tg52∘<tg62∘<tg65∘<tg73∘;
nên cotg38∘<tg62∘<cotg25∘<tg73∘.
Nhận xét: Để so sánh các tỉ số lượng giác sin và côsin của các góc, ta đưa về so sánh cùng một loại tỉ số lượng giác (ví dụ cùng là sin của các góc). Tương tự như vậy, để so sánh các tỉ số lượng giác tang và côtang của các góc, ta đưa về so sánh cùng một loại tỉ số lượng giác (ví dụ cùng là tang của các góc).
a,sắp xếp theo thứ tự tăng dần
5/8 , 9/16 , 2/3 và 7/12
b,sắp xếp theo thứ tự giảm dần
10/329 , 3/94 ,5/163 , 6/187
c sắp xếp theo thứ tự tăng dần
78/35 , 102/47 .88/29 ,61 / 52
a) Ta có: -2,63…; -2,75 < 0;
3,(3); 4,62 > 0
Vì 2,63…< 2,75 nên -2,63…> -2,75
Mà 3,(3) < 4,62
Nên -2,75 < -2,63…< 3,(3) < 4,62
Vậy các số trên theo thứ tự tăng dần là: -2,75 ; -2,63…; 3,(3) ; 4,62
b) Ta có: -0,078 < 0;
1,371…; 2,065; 2,056…; 1,(37) > 0
Ta có: 1,(37) = 1,3737….
Ta được: 2,065 > 2,056…> 1,3737…. > 1,371…
Nên 2,065 > 2,056…> 1,3737…. > 1,371… > -0,078
Vậy các số trên theo thứ tự giảm dần là: 2,065 ; 2,056…; 1,3737…. ; 1,371… ; -0,078
a: -2,75<-2,63...<3,(3)<4,62
c: 2,065>2,056...>1,(37)>1,371...>-0,078...
a) Các nguyên tố theo thứ tự bán kính nguyên tử tăng dần: O, N, C, B
b) Các nguyên tố theo thứ tự độ âm điện giảm dần: O, N, C, B
c) Các nguyên tố theo thứ tự tính phi kim giảm dần: O, N, C, B
thứ tự tăng dần là: 324, 436, 543, 765, 908.
thứ tự giảm dần là: 908, 765, 543, 436, 324
a: \(sin17^040'< sin45^030'< sin47^013'< sin55^025'\)
nên \(cos72^020'< cos44^030'< sin47^013'< sin55^025'\)
b: \(=2017\left(sin^223^0+sin^267^0\right)+\left(sin^237^0+sin^253^0\right)\)
=2017+1
=2018