Tính tổng :
a) 3+6+..................+52
b) 15+17+......................+49
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=\left(\left(-\frac{1}{4}-\frac{5}{3}\right)+\frac{7}{33}\right)-\left(-\frac{15}{12}+\frac{6}{11}-\frac{48}{49}\right)\)
\(=\left(-\frac{23}{12}+\frac{7}{33}\right)+\frac{15}{12}-\frac{6}{11}+\frac{48}{49}\)
\(=\left(-\frac{23}{12}+\frac{15}{12}\right)+\left(\frac{9}{33}-\frac{6}{11}\right)+\frac{48}{49}\)
\(=-\frac{2}{3}-\frac{3}{11}+\frac{48}{49}\)
\(=\frac{65}{1617}\)
b) \(=\frac{11}{125}+\left(-\frac{17}{18}+\frac{4}{9}\right)+\left(-\frac{5}{7}+\frac{17}{14}\right)\)
\(=\frac{11}{125}-\frac{1}{2}+\frac{1}{2}\)
\(=\frac{11}{125}\)
a)= \(2^3\left(17-14\right)\)
\(=8.3\)
\(=24\)
b)\(=17\left(85+15\right)-120\)
\(=17.100-120\)
\(=1700-120\)
\(=1580\)
c)\(=\left(25.4\right).\left(125.8\right).\left(2.5\right)\)
\(=100.1000.10\)
\(=1000000\)
d)\(=24.53+24.87-24.40\)
\(=24\left(53+87-40\right)\)
\(=24.100\)
\(=2400\)
e)\(=5.7.77-7.60-7.7.25-15.6.7\)
\(=7\left(5.77-60-7.25-15.6\right)\)
\(=7\left(385-60-175-90\right)\)
\(=7.60\)
\(=420\)
a, \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
= \(\sqrt{3^2-2.3.\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{6^2-2.6.\sqrt{6}+\left(\sqrt{6}\right)^2}\)
= \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(6-\sqrt{6}\right)^2}\)
= \(\left|3-\sqrt{6}\right|+\left|6-\sqrt{6}\right|\)
= \(3-\sqrt{6}+6-\sqrt{6}\)
= \(9-2\sqrt{6}\)
b. Đặt B = \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
Nhận xét : B > 0 , bình phương hai vế ta được :
\(B^2=\left(\sqrt{17-3\sqrt{32}}\right)^2+\left(\sqrt{17+3\sqrt{32}}\right)^2\)
\(B^2=17-3\sqrt{32}+17+3\sqrt{32}+2\sqrt{\left(17-3\sqrt{32}\right)\left(17+3\sqrt{32}\right)}\)
\(B^2=34+2\sqrt{17^2-\left(3\sqrt{32}\right)^2}\)
\(B^2=34+2\sqrt{289-288}\)
\(B^2=34+2=36\)
=> \(B=\pm\sqrt{36}\) mà B > 0 nên \(B=\sqrt{36}=6\)
c, Đặt C = \(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}\)
Nhận xét : C > 0 , bình phương hai vế ta đươc :
\(C^2=\left(\sqrt{49-5\sqrt{96}}\right)^2+\left(\sqrt{49+5\sqrt{96}}\right)^2\)
\(C^2=49-5\sqrt{96}+49+5\sqrt{96}+2\sqrt{\left(49-5\sqrt{96}\right)\left(49+5\sqrt{96}\right)}\)
\(C^2=98+2\sqrt{49^2-\left(5\sqrt{96}\right)^2}\)
\(C^2=98+2\sqrt{2401-2400}\)
\(C^2=98+2=100\)
=> \(C=\pm\sqrt{100}\) mà C > 0 nên \(C=\sqrt{100}=10\)
a) Ta có: \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
\(=\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{27-2\cdot3\sqrt{3}\cdot2\sqrt{2}+8}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|3\sqrt{3}-2\sqrt{2}\right|\)
\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)(Vì \(\left\{{}\begin{matrix}3>\sqrt{6}\\3\sqrt{3}>2\sqrt{2}\end{matrix}\right.\))
b) Ta có: \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
\(=\frac{\sqrt{34-6\sqrt{32}}+\sqrt{34+6\sqrt{32}}}{\sqrt{2}}\)
\(=\frac{\sqrt{18-2\cdot3\sqrt{2}\cdot4+16}+\sqrt{18+2\cdot3\sqrt{2}\cdot4+16}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(3\sqrt{2}-4\right)^2}+\sqrt{\left(3\sqrt{2}+4\right)^2}}{\sqrt{2}}\)
\(=\frac{\left|3\sqrt{2}-4\right|+\left|3\sqrt{2}+4\right|}{\sqrt{2}}\)
\(=\frac{3\sqrt{2}-4+3\sqrt{2}+4}{\sqrt{2}}\)(Vì \(3\sqrt{2}>4>0\))
\(=\frac{6\sqrt{2}}{\sqrt{2}}=6\)
\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\)
\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}\)
\(=3-2\sqrt{2}+3+2\sqrt{2}=6\)
\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\sqrt{\left(5-2\sqrt{6}\right)^2}+\sqrt{\left(5+2\sqrt{6}\right)^2}\)
\(=5-2\sqrt{6}+5+2\sqrt{6}=10\)
\(\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}+\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}\)
\(=2\sqrt{2}-\sqrt{5}+3\sqrt{5}+2\sqrt{2}=2\sqrt{5}+4\sqrt{2}\)
a: \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)
b: \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
\(=3-2\sqrt{2}+3+2\sqrt{2}\)
=6
c: Ta có: \(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}\)
\(=5-2\sqrt{6}+5+2\sqrt{6}\)
=10
d: Ta có: \(\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}\)
\(=\sqrt{13-4\sqrt{10}}+\sqrt{53+4\sqrt{90}}\)
\(=2\sqrt{2}-\sqrt{5}+3\sqrt{5}+2\sqrt{2}\)
\(=2\sqrt{5}+4\sqrt{2}\)
1) 40 + 15 + (-10) + (-15) 2) -13 + (-750) + (-17) + 750 3) (35 - 17) + (17 + 120 - 35)
= 40 + 15 - 10 - 15 = -13 - 750 - 17 + 750 = 35 - 17 + 17 + 120 - 35
= (40 - 10) + (15 - 15) = (-13 - 17) + (-750 + 750) = (35 - 35) + (-17 + 17) + 120
= 30 = -30 = 120
4) (55 + 45 + 15) - (15 - 55 + 45) 5) -(12 + 21 - 23) - (23 - 21 + 10) 6) (2020 - 79 + 15) - (-79 + 15)
= 55 + 45 + 15 - 15 + 55 - 45 = -12 -21 + 23 - 23 + 21 - 10 = 2020 - 79 + 15 + 79 - 15
= (45 - 45) + (15 - 15) + (55 + 55) = (-12 - 10) + (-21 + 21) + (23 - 23) = 2020 + (-79 + 79) + (15 - 15)
= 110 = -22 = 2020
7) -(515 - 80 + 91) - (2010 + 80 - 91) 8) 25 - (-17) + 24 - 12 9) 235 - (34 + 135) - 100
= -515 + 80 - 91 - 2010 - 80 + 91 = 25 + 17 + 24 - 12 = 235 - 34 - 135 - 100
= (-515 -2010) + (80 - 80) + (-91 + 91) = 54 = -34
= -2525
10) (13 + 49) - (13 - 135 + 49)
= 13 + 49 - 13 + 135 - 49
= (13 - 13) + (49 - 49) +135
= 135
a. 570 bài này nếu làm ra luôn thì nó chia không ra nha bạn.
b. Số số hạng là : (49-15) : 2 + 1= 18
15+17+...................+49=(15+49)x18:2=576