K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

giúp mình với!

11 tháng 3 2017

vì trong 1 tam giác chỉ có 1 đường cao chung

mà 1 cạnh dài,1 cạnh ngắn

nếu cộng thêm đường cao vào vs cạnh dài hơn

và cộng đường cao vào vs cạnh ngắn hơn

thì đương nhiên ta đã ra điều phải chứng minh rùi

mình k giỏi lập luận nên lấy ví dụ cho dẽ hiểu nè:

giả sử đường cao=2cm,cạnh dài=6cm,cạnh ngắn=4cm

tổng đường cao và cạnh dài:2+6=8

tổng đường cao và cạnh ngắn:2+4=6

đều có chung 2,6>4

=>điều phải chứng minh

18 tháng 7 2016

A B C K H D E F

Ta giả sử AB < AC . Cần chứng minh AB + CH < AC + BK

Trên cạnh AC lấy điểm D sao cho AB = AD . Từ D lần lượt hạ các đường vuông góc với AB và AC lần lượt tại E và F.

Ta có tam giác ADE = tam giác ABK (đặc biệt) => DE = BK

Xét : \(AC+BK=AD+DC+CH=AB+CD+HF\)(Vì DEHF là hình chữ nhật => BK = DE = HF)

Mà trong tam giác vuông DFC có cạnh huyền CD nên ta có \(DC>CF\)

\(\Rightarrow AC+BK=AB+CD+HF>AB+CF+HF=AB+CH\)

NM
20 tháng 3 2022

xét tam giác ABC vuông tại cao có đường cao AH và đường trung tuyến AM 

khi đó tam giác AHM là tam giác vuông tại H nên

ta có \(AH\le AM\text{ mà }AM=\frac{1}{2}BC\)

nên ta có  A B C H M

20 tháng 3 2022

Mình có 2 cách bạn chọn cách nào cũng được nhé.

Cách 1: Giả sử tam giác ABC vuông tại A có đường cao AH . Khi đó, theo hệ thức lượng trong tam giác vuông, ta có:

\(AH^2=BH.CH\)\(\Rightarrow AH=\sqrt{BH.CH}\)

Mặt khác nửa cạnh huyền chính là \(\frac{BC}{2}=\frac{BH+CH}{2}\)

Theo BĐT Cô-si, ta có \(\sqrt{BH.CH}\le\frac{BH+CH}{2}\)hay \(AH\le\frac{BC}{2}\)

Dấu "=" xảy ra khi \(BH=CH\)\(\Rightarrow\)đường cao AH cũng là trung tuyến \(\Rightarrow\Delta ABC\)vuông cân tại A.

Cách 2: Giả sử tam giác ABC vuông tại A có đường cao AH, trung tuyến AM. 

Ta ngay lập tức có được \(AM=\frac{BC}{2}\)

Vì AH, AM lần lượt là đường vuông góc và đường xiên hạ từ A đến BC \(\Rightarrow AH\le AM\)hay \(AH\le\frac{BC}{2}\)

Dấu "=" xảy ra khi \(AH\equiv AM\)hay \(\Delta ABC\)vuông cân tại A.