K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2

nên góc BAO=30 độ

=>góc BAC=60 độ

=>ΔBAC đều

b: Xét tứ giác OEAD có

OE//AD

OD//AE

AO là phân giác

=>OEAD là hình thoi

22 tháng 3 2018

a, Tứ giác CMHN là hình chữ nhật

b, Ta có  O C A ^ = O A C ^

C B A ^ = A C H ^ ; A C H ^ = C M N ^

=>  O C A ^ + C M N ^ = 90 0

Vậy OC ⊥ MN

c, Ta có ∆IOC có E là trực tâm suy ra IN đi qua M và E (đpcm)

d, Ta có  E M A ^ = C M N ^ ; C M N ^ = C B A ^ => ∆EMA:∆ENB

Tương tự ∆EMH:∆EHN => EM.EN = E H 2 ngoài ra , ∆EHC vuông tại H có HD là đường cao

=>  E H 2 = ED.EC. Từ đó ta có đpcm

a)Nối F với D : E với D ta có:

Xét tam giác FBC ta có 

D là trung điểm BC(1)

Góc BFC=90 (2)

Từ (1)(2)=>FD là trung tuyến của tam giác FBC

=>BD=CD=DF(*)

Chứng minh tương tự tam giác EBC

=>DE=DC=DB(**)

Từ (*)(**)=>BD=CD=DF=DE=(1/2BC)

=>B;F;E;C thuộc đừng tròn

=>D là tâm của đường tròn

B) Do B;H;E nằm trên cùng 1 đừng thẳng => H ko thuộc đừng tròn 

=>B;H;E;c ko thuộc đừng tròn

11 tháng 3 2022

a) Xét (O): 

AB là tiếp tuyến; B là tiếp điểm (gt). \(\Rightarrow\widehat{ABO}=90^o.\)

AC là tiếp tuyến; C là tiếp điểm (gt). \(\Rightarrow\widehat{ACO}=90^o.\)

\(\Rightarrow\) 4 điểm A, B, O, C cùng thuộc một đường tròn đường kính AO.

b) Xét (O):

\(\widehat{ACD}=\widehat{AEC}\) (Góc tạo bởi tia tiếp tuyến và dây; góc nội tiếp cùng chắn \(\stackrel\frown{CD}\)).

Xét \(\Delta ACD\) và \(\Delta AEC:\)

\(\widehat{ACD}=\widehat{AEC}\left(cmt\right).\)

\(\widehat{CAD}chung.\)

\(\Rightarrow\Delta ACD=\Delta AEC\left(g-g\right).\)

\(\Rightarrow\dfrac{AC}{AE}=\dfrac{AD}{AC}.\\ \Rightarrow AC^2=AD.AE.\)

9 tháng 10 2017

Ở câu 1d không có đường tròn đi qua 4 điểm A,F,B,C nên việc xác định B có thuộc đường tròn đi qa 4 điểm kia là k thể