K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

ko biết. k mik nha

26 tháng 7 2016

Khánh Huyền k mik nha

31 tháng 5 2017

vì chu vi của tam giác ABC là 24 cm nên a+b+c=24 (1)

  các cạnh a,b,c tỉ lệ với 3,4,5 nên \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)(2)

từ (1) và (2) áp dụng tính chất của dãy tỉ số bằng nhau ta có 

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{24}{12}=2\)

\(\Rightarrow a=2.3=6;b=2.4=8;c=2.5=10\)

vậy độ dài các cạnh của tam giác ABC lần lượt là 6cm, 8cm , 10cm

b) ta có

\(10^2=100\)

\(6^2+8^2=36+64=100\)

\(\Rightarrow10^2=6^2+8^2\)

suy ra tam giác ABC là tam giác vuông (theo định lý py-ta-go)

24 tháng 6 2019

Câu 1: Diện tích tam giác là: \(\frac{h_A.a}{2}=\frac{3.6}{2}=9\)(đvdt)

Câu 2: Diện tích tam giác là: \(\frac{1}{2}ab.\sin C=\frac{1}{2}.4.5.\sin60^o=5\sqrt{3}\)(đvdt)

Câu 2: Ta có: \(\hept{\begin{cases}c^2=a^2+b^2-2ab.\cos C\\a^2+b^2>c^2\end{cases}\Rightarrow c^2>c^2-2ab.\cos C\Leftrightarrow2ab.\cos C>0}\)
\(\Rightarrow\cos C>0\Rightarrow C< 90^o\)
Vậy C là góc nhọn

a: vecto AB=(1;1)

vecto AC=(2;6)

vecto BC=(1;5)

b: \(AB=\sqrt{1^2+1^2}=\sqrt{2}\)

\(AC=\sqrt{2^2+6^2}=2\sqrt{10}\)

\(BC=\sqrt{1^2+5^2}=\sqrt{26}\)

=>\(C=\sqrt{2}+2\sqrt{10}+\sqrt{26}\)

c: Tọa độ trung điểm của AB là:

x=(1+2)/2=1,5 và y=(-1+0)/2=-0,5

Tọa độ trung điểm của AC là;

x=(1+3)/2=2 và y=(-1+5)/2=4/2=2

Tọa độ trung điểm của BC là:

x=(2+3)/2=2,5 và y=(0+5)/2=2,5

d: ABCD là hình bình hành

=>vecto AB=vecto DC

=>3-x=1 và 5-y=1

=>x=2 và y=4

21 tháng 4 2019

Đặt \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

           \(=\left(a+b+c\right).\frac{1}{a}+\left(a+b+c\right).\frac{1}{b}+\left(a+b+c\right).\frac{1}{c}\)

           \(=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

            \(=\frac{a}{a}+\frac{b+c}{a}+\frac{b}{b}+\frac{a+c}{b}+\frac{c}{c}+\frac{a+b}{c}\)

           \(=1+\frac{b+c}{a}+1+\frac{a+c}{b}+1+\frac{a+b}{c}\)

         \(=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)

Ta có: trong 1 tam giác thì tổng độ dài 2 cạnh bao giờ cũng lớn hơn cạnh còn lại ( bất đẳng thức tam giác )

\(\Rightarrow\hept{\begin{cases}b+c>a\\a+c>b\\a+b>c\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{b+c}{a}>1\\\frac{a+c}{b}>1\\\frac{a+b}{c}>1\end{cases}}\)

\(\Rightarrow A>3+1+1+1\)

\(\Rightarrow A>6\left(đpcm\right)\)