Cho a,b,c là độ dài 3c của 1 tam giác.
a) Cmr: abc >= (a+b-c)(b+c-a)(c+a-b)
b) Biết tam giác đó có chu vi bằng 2. Tìm GTNN của P= 4(a^3 + b^3 + c^3) + 15abc.
Câu a mk làm đc rồi nha, m.n giúp mk câu b với.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì chu vi của tam giác ABC là 24 cm nên a+b+c=24 (1)
các cạnh a,b,c tỉ lệ với 3,4,5 nên \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)(2)
từ (1) và (2) áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{24}{12}=2\)
\(\Rightarrow a=2.3=6;b=2.4=8;c=2.5=10\)
vậy độ dài các cạnh của tam giác ABC lần lượt là 6cm, 8cm , 10cm
b) ta có
\(10^2=100\)
\(6^2+8^2=36+64=100\)
\(\Rightarrow10^2=6^2+8^2\)
suy ra tam giác ABC là tam giác vuông (theo định lý py-ta-go)
Câu 1: Diện tích tam giác là: \(\frac{h_A.a}{2}=\frac{3.6}{2}=9\)(đvdt)
Câu 2: Diện tích tam giác là: \(\frac{1}{2}ab.\sin C=\frac{1}{2}.4.5.\sin60^o=5\sqrt{3}\)(đvdt)
Câu 2: Ta có: \(\hept{\begin{cases}c^2=a^2+b^2-2ab.\cos C\\a^2+b^2>c^2\end{cases}\Rightarrow c^2>c^2-2ab.\cos C\Leftrightarrow2ab.\cos C>0}\)
\(\Rightarrow\cos C>0\Rightarrow C< 90^o\)
Vậy C là góc nhọn
a: vecto AB=(1;1)
vecto AC=(2;6)
vecto BC=(1;5)
b: \(AB=\sqrt{1^2+1^2}=\sqrt{2}\)
\(AC=\sqrt{2^2+6^2}=2\sqrt{10}\)
\(BC=\sqrt{1^2+5^2}=\sqrt{26}\)
=>\(C=\sqrt{2}+2\sqrt{10}+\sqrt{26}\)
c: Tọa độ trung điểm của AB là:
x=(1+2)/2=1,5 và y=(-1+0)/2=-0,5
Tọa độ trung điểm của AC là;
x=(1+3)/2=2 và y=(-1+5)/2=4/2=2
Tọa độ trung điểm của BC là:
x=(2+3)/2=2,5 và y=(0+5)/2=2,5
d: ABCD là hình bình hành
=>vecto AB=vecto DC
=>3-x=1 và 5-y=1
=>x=2 và y=4
Đặt \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\left(a+b+c\right).\frac{1}{a}+\left(a+b+c\right).\frac{1}{b}+\left(a+b+c\right).\frac{1}{c}\)
\(=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)
\(=\frac{a}{a}+\frac{b+c}{a}+\frac{b}{b}+\frac{a+c}{b}+\frac{c}{c}+\frac{a+b}{c}\)
\(=1+\frac{b+c}{a}+1+\frac{a+c}{b}+1+\frac{a+b}{c}\)
\(=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
Ta có: trong 1 tam giác thì tổng độ dài 2 cạnh bao giờ cũng lớn hơn cạnh còn lại ( bất đẳng thức tam giác )
\(\Rightarrow\hept{\begin{cases}b+c>a\\a+c>b\\a+b>c\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{b+c}{a}>1\\\frac{a+c}{b}>1\\\frac{a+b}{c}>1\end{cases}}\)
\(\Rightarrow A>3+1+1+1\)
\(\Rightarrow A>6\left(đpcm\right)\)