viết biểu thức sau dưới dang tổng 2 bình phương
\(2x^2+2y^2\)
Ai nhanh mik tik cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+2y^2+2xy-2x+2\)
\(2A=2x^2+4y^2+4xy-4x+4\)
\(2A=x^2+4xy+4y^2+x^2-4x+4\)
\(2A=\left(x+2y\right)^2+\left(x-2\right)^2\)
\(A=\frac{\left(x+2y\right)^2+\left(x-2\right)^2}{2}\)
9x2+4y2+2(3x+2y+6xy)+1
= 9x2+4y2+1+6x+4y+12xy
=(3x)2+(2y)2+12+2.3x.2y+2.2y.1+2.3x.1 (1)
Thay 3x=m,2y=n,1=p
=>(1)=m2+n2+p2+2mn+2np+2pm=(m+n+p)2
=> 9x2+4y2+2(3x+2y+6xy)+1=(3x+2y+1)2
a) \(x^2-4x+5+y^2+2y=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)\)
\(=\left(x-2\right)^2+\left(y+1\right)^2\)
b) \(2x^2+y^2-2xy+10x+25=\left(x^2+10x+25\right)+\left(x^2-2xy+y^2\right)\)
\(=\left(x+5\right)^2+\left(x-y\right)^2\)
c) \(2x^2+2y^2=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)=\left(x-y\right)^2+\left(x+y\right)^2\)
a) \(M=2x^2+2y^2\)
\(=2x^2+2y^2+2xy-2xy\)
\(=x^2+2xy+y^2+x^2-2xy+y^2\)
\(\Rightarrow M=\left(x+y\right)^2+\left(x-y\right)^2\)
b) \(N=a^2+16a+b^2+6b+73\)
\(=a^2+16a+64+b^2+6b+9\)
\(=\left(a+8\right)^2+\left(b+3\right)^2\)
2x2+2y2 = x2+y2+x2+y2 = x2+2xy+y2+x2-2xy+y2 = (x+y)2 + (x-y)2
a) Ta có: \(\left(x^2+9x+18\right)^2+2\left(x^2+9x\right)+37\)
\(=\left(x^2+9x+18\right)^2+2\cdot\left(x^2+9x+18\right)-36+37\)
\(=\left(x^2+9x+19\right)^2\)
b) Ta có: \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)
\(=\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+2\left(x+1\right)\left(y+1\right)\)
\(=\left(x^2+2x+2+y^2+2y\right)^2\)
a, \(\left(\frac{1}{2}+x\right)^2=\left(\frac{1}{2}\right)^2+2.\frac{1}{2}.x+x^2=\frac{1}{4}+x+x^2\)
\(\left(2x+1\right)^2=\left(2x\right)^2+2.2x.1+1^2=4x^2+4x+1\)
b, \(\left(2x+3y\right)^2=\left(2x\right)^2+2.2x.3y+\left(3y\right)^2=4x^2+12xy+9y^2\)
\(\left(0,01+xy\right)^2=\frac{1}{10000}+\frac{1}{50}xy+x^2y^2\)
c, \(\left(x+1\right)\left(x-1\right)=x^2-1\)
d, \(\left(x-2y\right)\left(x-2y\right)=\left(x-2y\right)^2=x^2-4xy+4y^2\)
\(56.64=\left(60-4\right)\left(60+4\right)=60^2-4^2\)
\(2x^2+2y^2=2.\left(x^2+y^2\right)\)
MÌNH KHÔNG CHẮC LẮM
\(2x^2+2y^2=2x^2+2y^2+2xy-2xy\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)\)
\(\left(x+y\right)^2+\left(x-y\right)^2\) Chúc bn hok tốt