Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}\right):\left(\dfrac{5}{12}+1-\dfrac{7}{11}\right)\)
\(=\dfrac{115}{132}:\dfrac{103}{132}=\dfrac{115}{132}.\dfrac{132}{103}=\dfrac{115}{103}\)
\(b,\left(-\dfrac{1}{2}\right)^2-\left(-2\right)^2-5^0\)
\(=\dfrac{1}{4}-4-1=-\dfrac{19}{4}\)
\(c,12\dfrac{1}{3}-\dfrac{5}{7}:\left(24-23\dfrac{5}{7}\right)\)
\(=\dfrac{37}{3}-\dfrac{5}{7}.\dfrac{2}{7}=\dfrac{37}{3}-\dfrac{10}{49}=\dfrac{1783}{147}\)
1: 243^5=(3^5)^5=3^25
3*27^8=3*(3^3)^8=3^25
=>243^5=3*27^8
6: 125^5=(5^3)^5=5^15
25^7=(5^2)^7=5^14
=>125^5>25^7(15>14)
5: 78^12-78^11=78^11(78-1)=78^11*77
78^11-78^10=78^10*77
mà 11>10
nên 78^12-78^11>78^11-78^10
a)
Có: \(2>1>0\)
\(\Rightarrow\sqrt{2}>1\Rightarrow1+\sqrt{2}>1+1\\ \Leftrightarrow1+\sqrt{2}>2\)
b) Có: \(0< \sqrt{3}< 3\)
\(\Rightarrow3+1>\sqrt{3}+1\\ \Rightarrow4>\sqrt{3}+1\)
c) Có: \(0< \sqrt{11}< \sqrt{25}\left(0< 11< 25\right)\)
\(\Rightarrow\sqrt{11}< 5\\ \Rightarrow-2\sqrt{11}>-2.5=-10\left(-2< 0\right)\)
d) Có: \(0< \sqrt{11}< \sqrt{16}=4\left(do.0< 11< 16\right)\)
\(\Rightarrow3\sqrt{11}< 3.4\\ \Leftrightarrow3\sqrt{11}< 12\)
a: 2=1+1<1+căn 2
b: 4=1+3>1+căn 3
c: -2căn 11=-căn 44
-10=-căn 100
mà 44<100
nên -2 căn 11>-10
d: 12=3*4=3*căn 16>3*căn 11
So sánh: mk làm luôn nè:
Ta có: \(\frac{10}{11}>\frac{10}{11+12};\frac{11}{12}>\frac{11}{11+12}\)
\(\Rightarrow\frac{10}{11}+\frac{11}{12}>\frac{10}{11+12}+\frac{11}{11+12}\)
\(\Rightarrow\frac{10}{11}+\frac{11}{12}>\frac{10+11}{11+12}\)
MK KO BIẾT ĐÚNG KO NỮA NÊN BN CÓ THỂ THAM KHẢO CỦA CÁC BẠN KHÁC NHÉ.!!
CHÚC BẠN HỌC TỐT. ^_^
Giải:
a) Gọi dãy đó là A, ta có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\)
\(2A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\)
\(2A-A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\right)\)
\(A=\dfrac{1}{2}-\dfrac{1}{2^{2014}}\)
Vì \(\dfrac{1}{2}< 1;\dfrac{1}{2^{2014}}< 1\) nên \(\dfrac{1}{2}-\dfrac{1}{2^{2014}}< 1\)
\(\Rightarrow A< 1\)
b) \(A=\dfrac{10^{11}-1}{10^{12}-1}\) và \(B=\dfrac{10^{10}+1}{10^{11}+1}\)
Ta có:
\(A=\dfrac{10^{11}-1}{10^{12}-1}\)
\(10A=\dfrac{10^{12}-10}{10^{12}-1}\)
\(10A=\dfrac{10^{12}-1+9}{10^{12}-1}\)
\(10A=1+\dfrac{9}{10^{12}-1}\)
Tương tự:
\(B=\dfrac{10^{10}+1}{10^{11}+1}\)
\(10B=\dfrac{10^{11}+10}{10^{11}+1}\)
\(10B=\dfrac{10^{11}+1+9}{10^{11}+1}\)
\(10B=1+\dfrac{9}{10^{11}+1}\)
Vì \(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\) nên \(10A< 10B\)
\(\Rightarrow A< B\)
Bài 1
a: 11/12=1-1/12
23/24=1-1/24
mà -1/12>-1/24
nên 11/12>23/24
b: -3/20=-9/60
-7/12=-35/60
mà -9>-35
nên -3/20>-7/12
1: 243^5=(3^5)^5=3^25
3*27^8=3*3^24=3^25=243^5
3: 3^300=27^100
2^200=4^100
mà 27>4
nên 3^300>2^200
4: 15^2=3^2*5^2
81^3*125^3=3^12*5^9
=>15^2<81^3*125^3
6: 125^5=5^15
25^7=5^14
mà 15>14
nên 125^5>25^7
a) Ta có:
\(2=1+1=1+\sqrt{1}\)
Mà: \(1< 2\Rightarrow\sqrt{1}< \sqrt{2}\)
\(\Rightarrow1+\sqrt{1}< \sqrt{2}+1\)
\(\Rightarrow2< \sqrt{2}+1\)
b) Ta có:
\(1=2-1=\sqrt{4}-1\)
Mà: \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\)
\(\Rightarrow\sqrt{4}-1>\sqrt{3}-1\)
\(\Rightarrow1>\sqrt{3}-1\)
c) Ta có:
\(10=2\cdot5=2\sqrt{25}\)
Mà: \(25< 31\Rightarrow\sqrt{25}< \sqrt{31}\)
\(\Rightarrow2\sqrt{25}< 2\sqrt{31}\)
\(\Rightarrow10< 2\sqrt{31}\)
d) Ta có:
\(-12=-3\cdot4=-3\sqrt{16}\)
Mà: \(16>11\Rightarrow\sqrt{16}>\sqrt{11}\)
\(\Rightarrow-3\sqrt{16}< -3\sqrt{11}\)
\(\Rightarrow-12< -3\sqrt{11}\)
\(2\frac{3}{11}\times1\frac{1}{12}\times2,22\)
\(=\frac{25}{11}\times\frac{13}{12}\times2,22\)
\(=\frac{325}{132}\times2,22=\frac{481}{88}\)
Ok jhknfdhvfthgdftfhxrgthghdgxf 🙆 htcjngccvcvmhcmghv,iyfkghcjfhhmgcmghmguftkuuyfukytyiufkyhgmchmfcgnngfcnbfcgnfcfmhcmfh