K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2021

\(C=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{1}{4-9x^2}=\dfrac{3x+2-3x+2+1}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{5}{9x^2-4}\)

17 tháng 9 2021

Hic hic

22 tháng 11 2021

\(a,A=\dfrac{3x+2-3x+2+3x-6}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{1}{3x+2}\\ b,B=\dfrac{1}{2}+\dfrac{x}{\dfrac{x+2-x}{x+2}}=\dfrac{1}{2}+\dfrac{x}{\dfrac{2}{x+2}}=\dfrac{1}{2}+\dfrac{x\left(x+2\right)}{2}\\ B=\dfrac{1+x^2+2x}{2}=\dfrac{\left(x+1\right)^2}{2}\)

7 tháng 5 2021

M= 1/ 3x-2 - 4/ 3x +2 - 3x-6/4-9x^2

= 3x+2 - 12x + 8 + 3x-6

= -6x +4

7 tháng 5 2021

`M=1/(3x-2)-4/(3x+2)-(3x-6)/(4-9x^2)(x ne +-2/3)`

`=(3x+2-4(3x-2)+3x+6)/(9x^2-4)`

`=(-6x+16)/(9x^2-4)`

a) \(\dfrac{9x^2-6x+1}{9x^2-1}\)

\(=\dfrac{\left(3x-1\right)^2}{\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{3x-1}{3x+1}\)

\(=\dfrac{3\cdot\left(-3\right)-1}{3\cdot\left(-3\right)+1}=\dfrac{-9-1}{-9+1}=\dfrac{-10}{-8}=\dfrac{5}{4}\)

b) Ta có: \(\dfrac{x^2-6x+9}{3x^2-9x}\)

\(=\dfrac{\left(x-3\right)^2}{3x\left(x-3\right)}\)

\(=\dfrac{x-3}{3x}\)

\(=\dfrac{-\dfrac{1}{3}-3}{3\cdot\dfrac{-1}{3}}=\dfrac{-\dfrac{10}{3}}{-1}=\dfrac{10}{3}\)

c) Ta có: \(\dfrac{x^2-4x+4}{2x^2-4x}\)

\(=\dfrac{\left(x-2\right)^2}{2x\left(x-2\right)}\)

\(=\dfrac{x-2}{2x}\)

\(=\dfrac{\dfrac{-1}{2}-2}{2\cdot\dfrac{-1}{2}}=\dfrac{-\dfrac{5}{2}}{-1}=\dfrac{5}{2}\)

21 tháng 12 2023

Bài 3:
a) \(\sqrt{3x-2}=4\)
\(\sqrt{3x-2}=\sqrt{4^2}\)
\(3x-2=4^2=16\)
    \(3x=16+2=18\)
    \(x=18:3=6\)
    Vậy \(x=6\)
b)\(\sqrt{4x^2+4x+1}-11=5\)
\(\sqrt{\left(2x\right)^2+2\left(2x\right)\cdot1+1^2}-11=5\)
\(\sqrt{\left(2x+1\right)^2}-11=5\)
TH1:
\(\left(2x+1\right)-11=5\)
    \(2x+1=5+11=16\)
    \(2x=16-1=15\)
    \(x=15:2=7,5\)
TH2:
\(\left(2x+1\right)-11=-5\)
    \(2x-1=-5+11=6\)
    \(2x=6+1=7\)
    \(x=7:2=3,5\)
    Vậy \(x=\left\{7,5;3,5\right\}\) 
    (Câu này mình không chắc chắn lắm)   
    (Học sinh lớp 6 đang làm bài này)    

21 tháng 12 2023

Bài 4:

a: \(C=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}+x+\sqrt{x}}{\sqrt{x}}=\dfrac{2x}{\sqrt{x}}=2\sqrt{x}\)

b: C-6<0

=>C<6

=>\(2\sqrt{x}< 6\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< x< 9\\x\ne1\end{matrix}\right.\)

16 tháng 12 2022

f: \(=\dfrac{5x-3-x+3}{4x^2y}=\dfrac{4x}{4x^2y}=\dfrac{1}{xy}\)

g: \(=\dfrac{3x+10-x-4}{x+3}=\dfrac{2x+6}{x+3}=2\)

h: \(=\dfrac{4-2+x}{x-1}=\dfrac{x+2}{x-1}\)

n: \(=\dfrac{3x-x+6}{x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{x\left(x+3\right)}=\dfrac{2}{x}\)

p: \(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}=0\)

k: \(=\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{-6}{x^2-4}\)

m: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)

29 tháng 6 2021

`c)1/(2sqrt2)-3/2sqrt{4,5}+2/5sqrt{50}`

`=1/(2sqrt2)-3/2sqrt{9/2}+2/5sqrt{25.2}`

`=1/(2sqrt2)-9/(2sqrt2)+2sqrt2`

`=2sqrt2-8/(2sqrt2)`

`=2sqrt2-sqrt2=sqrt2`

`d)4/(3+sqrt5)-8/(1+sqrt5)+15/sqrt5`

`=(4(3-sqrt5))/(9-5)-(8(sqrt5-1))/(5-1)+3sqrt5`

`=3-sqrt5-2(sqrt5-1)+3sqrt5`

`=3+3sqrt5-3sqrt5+2=5`

a: ĐKXĐ: \(x\notin\left\{0;1;2;3;4;5\right\}\)

b: \(P=\dfrac{1}{\left(x-1\right)\cdot x}+\dfrac{1}{\left(x-2\right)\left(x-1\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)

\(=\dfrac{1}{x-1}-\dfrac{1}{x}+\dfrac{1}{x-2}-\dfrac{1}{x-1}+\dfrac{1}{x-3}-\dfrac{1}{x-2}+\dfrac{1}{x-4}-\dfrac{1}{x-3}+\dfrac{1}{x-5}-\dfrac{1}{x-4}\)

\(=\dfrac{1}{x-5}-\dfrac{1}{x}=\dfrac{x-x+5}{x\left(x-5\right)}=\dfrac{5}{x\left(x-5\right)}\)

a) Ta có: \(A=3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+30\)

\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+30\)

\(=14\sqrt{2x}+30\)

b) Ta có: \(B=4\sqrt{\dfrac{25x}{4}}-\dfrac{8}{3}\sqrt{\dfrac{9x}{4}}-\dfrac{4}{3x}\cdot\sqrt{\dfrac{9x^3}{64}}\)

\(=4\cdot\dfrac{5\sqrt{x}}{2}-\dfrac{8}{3}\cdot\dfrac{3\sqrt{x}}{2}-\dfrac{4}{3x}\cdot\dfrac{3x\sqrt{x}}{8}\)

\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)

\(=\dfrac{11}{2}\sqrt{x}\)

c) Ta có: \(\dfrac{y}{2}+\dfrac{3}{4}\sqrt{9y^2-6y+1}-\dfrac{3}{2}\)

\(=\dfrac{1}{2}y+\dfrac{3}{4}\left(1-3y\right)-\dfrac{3}{2}\)

\(=\dfrac{1}{2}y+\dfrac{3}{4}-\dfrac{9}{4}y-\dfrac{3}{2}\)

\(=-\dfrac{7}{4}y-\dfrac{3}{4}\)