Chứng minh các định nghĩa sau :
a) Nếu n là số tự nhiên chẵn thì n2 là số tự nhiên chẵn
b) nếu n2 là số tự nhiên thì n là số tự nhiên chẵn
c) nếu n2 chia hết cho 3 thì n chia hết cho 3, với n là số tự nhiên
d) nếu x ≠ 1 hay y ≠ 1 thì x2 + y2 - 2x - 2y ≠ 0
e) nếu a ≥ 0 hay b ≥ 0 thì a + b ≥ 2\(\sqrt{ab}\)
f) nếu a, b, c không đồng thời bằng nhau thì: a2 +b2 + c2 > ab + bc + ca
a) Gọi n chẵn là 2a
⇒ n2 = 2a . 2a = 4a2 ⋮ 2
⇒ n chẵn thì n2 chẵn