D , \ 10\ x \ \sqrt{0.04}\ \ \sqrt{\frac{4}{25}}\ \ \frac{1}{16}\ x \ \sqrt{64}\ \ \frac{1}{4}\ x \ \sqrt{4}\
Ai Nhanh Mk Tick Đúng Trc Nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải :
a) \(A=3\sqrt{x-1}+7\ge7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
b) \(B=\frac{4}{\sqrt{x}+3}\le\frac{4}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
c) \(C=\frac{3\sqrt{x}+8}{\sqrt{x}+3}=\frac{3\left(\sqrt{x}+3\right)-1}{\sqrt{x}+3}=3-\frac{1}{\sqrt{x}+3}\)
Có \(\frac{1}{\sqrt{x}+3}\le\frac{1}{3}\forall x\)
\(\Leftrightarrow-\frac{1}{\sqrt{x}+3}\ge\frac{-1}{3}\)
\(\Leftrightarrow3-\frac{1}{\sqrt{x}+3}\ge3-\frac{1}{3}=\frac{8}{3}\)
\(\Leftrightarrow C\ge\frac{8}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
d) \(D=x-3\sqrt{x}+2\)
\(D=\left(\sqrt{x}\right)^2-2\cdot\sqrt{x}\cdot\frac{3}{2}+\frac{9}{4}-\frac{1}{4}\)
\(D=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow x=\frac{9}{4}\)
e) \(E=\frac{4}{x-2\sqrt{x}+3}=\frac{4}{\left(\sqrt{x}-1\right)^2+2}\le\frac{4}{2}=2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
a) Vì \(3\sqrt{x-1}\ge0\forall x\ge1\)
\(\Rightarrow3\sqrt{x-1}+7\ge7\forall x\ge1\)
Dấu "=" xảy ra <=>\(3\sqrt{x-1}=0\Leftrightarrow\sqrt{x-1}=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Amin =7 tại x=1
Bằng 1 phép so sánh đơn giản \(\frac{1}{\sqrt{x+1}+1}>\frac{1}{\sqrt{x+100}+10}\) ; \(\forall x\ge-1\)
Ta suy ra luôn pt này vô nghiệm
k) ĐK: $x^2\geq 5$
PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$
$\Leftrightarrow 2\sqrt{x^2-5}=4$
$\Leftrightarrow \sqrt{x^2-5}=2$
$\Rightarrow x^2-5=4$
$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)
l) ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$
$\Leftrightarrow 4\sqrt{x+1}=4$
$\Leftrightarrow \sqrt{x+1}=1$
$\Rightarrow x+1=1$
$\Rightarrow x=0$
m)
ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$
$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$
$\Leftrightarrow 4\sqrt{x+1}=16$
$\Leftrightarrow \sqrt{x+1}=4$
$\Rightarrow x=15$ (thỏa mãn)
h)
ĐKXĐ: $x\geq -5$
PT $\Leftrightarrow \sqrt{x+5}=6$
$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)
i) ĐKXĐ: $x\geq 5$
PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)
\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)
j)
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$
$\Leftrightarrow -2\sqrt{2x}+4=0$
$\Leftrightarrow \sqrt{2x}=2$
$\Rightarrow x=2$ (thỏa mãn)
Ta có: \(S=\left(\frac{\sqrt{x}+1}{x-4}-\frac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right)\cdot\frac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}}\)
\(=\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)^2\cdot\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)^2\cdot\left(\sqrt{x}+2\right)}\right)\cdot\frac{x\left(\sqrt{x}+2\right)-4\left(\sqrt{x}+2\right)}{\sqrt{x}}\)
\(=\left(\frac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)^2\cdot\left(\sqrt{x}+2\right)}\right)\cdot\frac{\left(\sqrt{x}+2\right)\cdot\left(x-4\right)}{\sqrt{x}}\)
\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-2\right)^2\cdot\left(\sqrt{x}+2\right)}\cdot\frac{\left(\sqrt{x}+2\right)^2\cdot\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(=\frac{-2\sqrt{x}\cdot\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\cdot\sqrt{x}}\)
\(=\frac{-2\left(\sqrt{x}+2\right)}{\sqrt{x}-2}\)
\(=\frac{-2\sqrt{x}-4}{\sqrt{x}-2}\)
1+1=2 tích đi
1 + 1 = 2
k mik nhé