K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

1)

DKCĐ: a>0,\(a\ne1\)

\(=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}}{a}-\dfrac{1}{a}\right)\)\(=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right)\left(\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\right)\)\(=\dfrac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}.\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\\ =\dfrac{1+a+1-a+2\sqrt{\left(1+a\right)\left(1-a\right)}}{\left(1+a\right)-\left(1-a\right)}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\)\(=\dfrac{2\left(\sqrt{\left(1+a\right)\left(1-a\right)}+1\right)}{2a}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\\ =\dfrac{\sqrt{\left(1+a\right)\left(1-a\right)}+1}{a}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\\ =\dfrac{\left(\sqrt{\left(1+a\right)\left(1-a\right)}+1\right)\left(\sqrt{\left(1+a\right)\left(1-a\right)}-1\right)}{a^2}\\ =\dfrac{\left(1+a\right)\left(1-a\right)-1}{a^2}\\ =\dfrac{1-a^2-1}{a^2}\\ =\dfrac{-a^2}{a^2}\\ =-1\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Lời giải:

Xét số hạng tổng quát:

\(\frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n(n+1)}(\sqrt{n+1}+\sqrt{n})}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(n+1-n)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Do đó:

\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)

\(=1-\frac{1}{\sqrt{2019}}\)

31 tháng 7 2018

a/ Ta có:

\(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\)

\(\Rightarrow A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)

31 tháng 7 2018

a.\(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+\sqrt{2018}}=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{2019}-\sqrt{2018}}{\left(\sqrt{2019}+\sqrt{2018}\right)\left(\sqrt{2019}-\sqrt{2018}\right)}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

1.

Đặt biểu thức là $A$

Ta thấy:

$\frac{1}{1+\sqrt{2}}=\frac{\sqrt{2}-1}{(1+\sqrt{2})(\sqrt{2}-1)}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1$

Tương tự với các phân số còn lại và công theo vế thì:

$A=(\sqrt{2}-1)+(\sqrt{3}-\sqrt{2})+...+(\sqrt{2019}-\sqrt{2018})$

$=\sqrt{2019}-1$

 

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

2.

$\sqrt{8-2\sqrt{15}}=\sqrt{5-2\sqrt{5.3}+3}+\sqrt{3-2\sqrt{3.1}+1}$

$=\sqrt{(\sqrt{5}-\sqrt{3})^2}+\sqrt{(\sqrt{3}-1)^2}$

$=|\sqrt{5}-\sqrt{3}|+|\sqrt{3}-1|$

$=\sqrt{5}-\sqrt{3}+\sqrt{3}-1=\sqrt{5}-1$

13 tháng 10 2018

\(A=3\sqrt{5}-\dfrac{1}{5}\sqrt{5}+\dfrac{3\left(\sqrt{5}+1\right)}{5-1}\)

\(=\dfrac{14}{5}\sqrt{5}+\dfrac{3}{4}\sqrt{5}+\dfrac{3}{4}\)

\(=\dfrac{71}{20}\sqrt{5}+\dfrac{3}{4}\)

15 tháng 10 2022

a: \(A=3\sqrt{5}-\dfrac{1}{5}\sqrt{5}+\dfrac{3}{4}+\dfrac{3}{4}\sqrt{5}=\dfrac{71}{20}\sqrt{5}+\dfrac{3}{4}\)

b: Đặt a=2018

\(B=\sqrt{a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2}\)

\(=\sqrt{a^2+\left(a^2+a\right)^2+a^2+2a+1}\)

\(=\sqrt{2a^2+1+2a+a^4+2a^3+a^2}\)

\(=\sqrt{a^4+2a^3+3a^2+2a+1}\)

\(=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1=2018^2+2018+1\)

28 tháng 12 2018

Đây bạn :V

Ta có: \(\sqrt{2018^2+2019^2+2018^2+2019^2}\)

\(=2018+2019+2018+2019\)

\(=2.2018+2.2019\)

\(=2.\left(2018+2019\right)\)

\(=2.4073\)

\(=8047\)

Chúc bạn học tốt:))

28 tháng 12 2018

Đặt \(2018=a\)

\(\Rightarrow\sqrt{2018^2+2019^2+2018^2.2019^2}=\sqrt{a^2+\left(a+1\right)^2+a^2.\left(a+1\right)^2}\)

\(=\sqrt{a^4+2a^3+3a^2+2a+1}=\sqrt{\left(a^2+a+1\right)^2}\)

\(=a^2+a+1=2018^2+2018+1\)

9 tháng 12 2019

Ta có: \(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{k+1}}=\frac{\left(k+1\right)\sqrt{k}-k\sqrt{k+1}}{k\left(k+1\right)^2-k^2\left(k+1\right)}\)

\(=\frac{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)}{k^3+2k^2+k-k^3-k^2}\)

\(=\frac{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)}{k\left(k+1\right)}\)

\(=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)

Lần lượt thay k=1;2;...;2018 ta được:

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{1}{1}-\frac{1}{\sqrt{2}}\)

\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)

...

\(\frac{1}{2019\sqrt{2018}+2018\sqrt{2019}}=\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)

Cộng vế theo vế ta được:

\(C=1-\frac{1}{\sqrt{2019}}=...\)

9 tháng 12 2019
https://i.imgur.com/rbOpKwh.jpg