K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 8 2018

Lời giải:

Đặt \(\sqrt[3]{a}=x; \sqrt[3]{b}=y\). Khi đó ta có $x^3+y^3=2$ và cần chứng minh \(0< x+y\leq 2\).

Thật vậy.

Ta thấy: \(x^3+y^3=2>0\)

\(\Leftrightarrow (x+y)(x^2-xy+y^2)>0(1)\)

\(x^2-xy+y^2=(x-\frac{y}{2})^2+\frac{3y^2}{4}\geq 0(2)\)

Từ $(1)$ và $(2)$ suy ra \(x+y>0\)

Lại có:

\(4(x^3+y^3)-(x+y)^3=3(x^3+y^3)-3(x^2y+xy^2)\)

\(=3[x^2(x-y)-y^2(x-y)]=3(x-y)^2(x+y)\)

Vì $x+y>0$ (cmt) và $(x-y)^2\geq 0$ nên \(4(x^3+y^3)-(x+y)^3\geq 0\)

\(\Rightarrow 4(x^3+y^3)\geq (x+y)^3\) hay \(8\geq (x+y)^3\Rightarrow x+y\leq 2\)

Ta có đpcm.

28 tháng 4 2019

Hmm , bài này trông quen quen , trong cuốn "các bài giảng về bđt Cô-si" của Phạm Văn Hùng ; Nguyễn Vũ Lương , Nguyễn Ngọc Thắng thì phải . Mình đọc rồi mà quên mất tiêu =( Để nghĩ lại coi nha

28 tháng 4 2019

Bạn ơi , mình không có quyển đó,  bạn cố nhớ lại giúp mình với , huhu , thứ 6 là mình phải nộp rồi

12 tháng 4 2020

với mọi x,y,z >0 ta có: \(x+y+z\ge3\sqrt[3]{xyz};\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

\(\Rightarrow\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

đẳng thức xảy ra khi x=y=z

ta có: \(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

đẳng thức xảy ra khi a=b

tương tự: \(\frac{1}{\sqrt{5b^2+2ab+2b^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)

đẳng thức xảy ra khi b=c

\(\frac{1}{\sqrt{5c^2+2bc+2c^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)

đẳng thức xảy ra khi c=a

Vậy \(\frac{1}{\sqrt{5a^2+2ca+2a^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ac+2a^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)

\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)

đẳng thức xảy ra khi a=b=c=\(\frac{3}{2}\)

29 tháng 1 2020

Tham khảo bài của mình

27 tháng 12 2020

c=c.1 thay 1 bằng a+b+c xong cô si

 

8 tháng 11 2017

\(a\sqrt{2}+b\sqrt{3}=-c\)

\(\Leftrightarrow2a+3b+2ab\sqrt{6}=c^2\)

\(\Leftrightarrow2ab\sqrt{6}=c^2-2a-3b\)

Vì VT là số vô tỷ còn VP là số hữu tỷ nên để 2 vế bằng nhau thì.

\(\Rightarrow\hept{\begin{cases}ab=0\\c^2-2a-3b=0\end{cases}}\)

Với \(a=0\)

\(\Rightarrow b\sqrt{3}=-c\)

\(\Rightarrow b=c=0\)

Với \(b=0\)

\(\Rightarrow a\sqrt{2}=-c\)

\(\Rightarrow a=c=0\)

Vậy \(a=b=c=0\)

29 tháng 1 2020

Ta sẽ chứng minh: \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)với x,y > 0.

Thật vậy: \(x+y+z\ge3\sqrt[3]{xyz}\)(bđt Cô -si)

và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{abc}}\)(bđt Cô -si)

\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)(Dấu "="\(\Leftrightarrow x=y=z\))

Ta có: \(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

(Dấu "=" xảy ra khi a = b)

Tương tự ta có:\(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)(Dấu "=" xảy ra khi b=c)

\(\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)(Dấu "=" xảy ra khi c=a)

\(VT=\text{Σ}_{cyc}\frac{1}{\sqrt{5a^2+2ab+b^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)

\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)

(Dấu "=" xảy ra khi \(a=b=c=\frac{3}{2}\))

30 tháng 1 2020

Ô, thanh you, bạn 2k7 sao mà giỏi thế