K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2021

\(\sqrt{xy}\left(x-y\right)=x+y\)

<=>\(x-y=\frac{x+y}{\sqrt{xy}}\)

<=>\(\left(x-y\right)^2=\frac{\left(x+y\right)^2}{xy}\)

<=>\(\left(x+y\right)^2=\frac{\left(x+y\right)^2}{xy}+4xy\ge2\sqrt{\frac{\left(x+y\right)^2}{xy}.4xy}=4\left(x+y\right)\)

=> \(x+y\ge4\)(ĐPCM)

NV
17 tháng 9 2021

\(\sqrt{xy}\left(x-y\right)=x+y\)

\(\Rightarrow xy\left(x-y\right)^2=\left(x+y\right)^2\)

\(\Rightarrow xy\left[\left(x+y\right)^2-4xy\right]=\left(x+y\right)^2\)

\(\Rightarrow xy\left(x+y\right)^2=4\left(xy\right)^2+\left(x+y\right)^2\ge2\sqrt{4\left(xy\right)^2\left(x+y\right)^2}=4xy\left(x+y\right)\)

\(\Rightarrow x+y\ge4\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2+\sqrt{2};2-\sqrt{2}\right)\)

NV
26 tháng 7 2021

a.

\(\dfrac{x}{x+\sqrt{3x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}\)

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}\le\dfrac{x}{x+\sqrt{xy}+\sqrt{xz}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Tương tự:

\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\) ; \(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Cộng vế:

\(VT\le\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

NV
26 tháng 7 2021

b.

\(VP=\dfrac{4\left(a+b+c\right)}{2\sqrt{4a\left(a+3b\right)}+2\sqrt{4b\left(b+3c\right)}+2\sqrt{4c\left(c+3a\right)}}\)

\(VP\ge\dfrac{4\left(a+b+c\right)}{4a+a+3b+4b+b+3c+4c+c+3a}\)

\(VP\ge\dfrac{4\left(a+b+c\right)}{8\left(a+b+c\right)}=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

24 tháng 10 2021

Áp dụng BĐT Bunhiacopski:

Đặt \(A=x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\)

\(\Leftrightarrow A^2=\left[x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\right]^2\le\left(x^2+16-x^2\right)\left(16-y+y\right)\\ \Leftrightarrow A^2\le16\cdot16=256\\ \Leftrightarrow A\le16\\ A_{max}=16\Leftrightarrow\dfrac{x^2}{16-x^2}=\dfrac{16-y}{y}\Leftrightarrow x^2y=256-16y-16x^2+x^2y\\ \Leftrightarrow16x^2+16y-256=0\\ \Leftrightarrow x^2+y-16=0\\ \Leftrightarrow x^2=16-y\Leftrightarrow x=\sqrt{16-y}\)

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Chứng minh gì bạn?

8 tháng 8 2019

Bạn ơi hình như đề sai ạ

Bạn thử một cặp x,y vào sẽ thấy ạ

8 tháng 8 2019

Theo mk nghĩ đề đúng thì chắc cách giải như zầy

\(\Rightarrow\hept{\begin{cases}x+\sqrt{1+x^2}=\frac{1}{y+\sqrt{1+y^2}}\\y+\sqrt{1+y^2}=\frac{1}{x+\sqrt{1+x^2}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+\sqrt{1+x^2}-\sqrt{1+y^2}+y=0\\y+\sqrt{1+y^2}-\sqrt{1+x^2}+x=0\end{cases}}\)

\(\Leftrightarrow2x+2y=0\Leftrightarrow x+y=0\)

NV
11 tháng 3 2021

\(GT\Leftrightarrow xy=2\left(x+y\right)\ge4\sqrt{xy}\Rightarrow\sqrt{xy}\ge4\)

\(\Rightarrow4\le\sqrt{xy}\le\dfrac{1}{4}\left(\sqrt{x}+\sqrt{y}\right)^2\)

\(\Rightarrow\sqrt{x}+\sqrt{y}\ge4\)

Dấu "=" xảy ra khi \(x=y=4\)

28 tháng 9 2017

BĐT cần chứng minh tương đương

\(VT\ge4\left(x+y+z\right)\)

\(\Leftrightarrow\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge4\left(x+y+z\right)\)

Theo BĐT Cauchy-Schwarz và AM-GM, ta có:

\(\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge\dfrac{\left(y+z\right)\left(x+\sqrt{yz}\right)}{x}=y+z+\dfrac{\left(y+z\right)\sqrt{yz}}{x}\ge y+z+\dfrac{2yz}{x}\)

Suy ra: \(\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge2\left(x+y+z\right)-2\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\)

Mặt khác, theo AM-GM:
\(\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)^2\ge3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\ge x+y+z\)

\(\Rightarrow\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge4\left(x+y+z\right)\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\dfrac{\sqrt{2}}{3}\)

@Phương An

15 tháng 5 2020

Bạn kiểm tra lại đề

\(z=max\left\{x;y;z\right\}\)hay \(z=min\left\{x;y;z\right\}\)

28 tháng 2 2021

Áp dụng bđt Cô-si vào 2 số dương có:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\dfrac{1}{2}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}\ge4\)

\(\Rightarrow\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}=2\sqrt{4}=4\)

Dấu = xảy ra \(\Leftrightarrow x=y=4\)

28 tháng 2 2021

`1/x+1/y>=2/(\sqrt{xy})`

`<=>1/2>=2/(\sqrt{xy})`

`<=>\sqrt{xy}>=4`

`=>\sqrt{x}+\sqrt{y}>=2.2=4`

Dấu "=" xảy ra khi `x=y=4`