4) Cho tam giác ABC vuông tại A có AH là đường cao. Kẻ HE vuông góc AB, HF vuông góc AC.
a) Chứng minh: AE.AB = HB.HC
b) Chứng minh: AF2 = AE.EB
c) Chứng minh: AH3 = BE.BC.CF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)
b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
\(a,AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\left(pytago\right)\)
Áp dụng HTL: \(AH\cdot BC=AB\cdot AC\Leftrightarrow AH=\dfrac{192}{20}=9,6\left(cm\right)\)
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{16}{20}=\dfrac{4}{5}\approx\sin53^07'\Leftrightarrow\widehat{B}\approx53^07'\)
a, Sử dụng hệ thức giữa cạnh góc vuông và hình chiếu lên cạnh huyền và cạnh huyền trong tam giác vuông HBA và HCA
b, Tương tự a) và áp dụng hệ thức giữa đường cao và hình chiếu cạnh góc vuông lên cạnh huyền trong tam giác vuông ABC
a: Xét tứ giác AMDN có
\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)
Do đó: AMDN là hình chữ nhật
Suy ra: AD=MN
Xét ΔFHA vuông tại F và ΔACB vuông tại A có
\(\widehat{FHA}=\widehat{ACB}\left(=90^0-\widehat{HAC}\right)\)
Do đó: ΔFHA đồng dạng với ΔACB
=>\(\dfrac{AF}{AB}=\dfrac{HA}{CB}\)
Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
nên AEHF là hình chữ nhật
=>AH=EF
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(EF\cdot BC=AH\cdot BC\)
Xét ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\)
\(\dfrac{AE\cdot AB}{EF\cdot BC}=\dfrac{AH^2}{AH\cdot BC}=\dfrac{AH}{BC}=\dfrac{AF}{AB}\)
c: Xét ΔAHB vuông tại H có \(AE\cdot AB=AH^2\)
=>\(AE=\dfrac{AH^2}{AB}\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\)
=>\(AF=\dfrac{AH^2}{AC}\)
XétΔABC vuông tại A có
\(tanC=\dfrac{AB}{AC}\)
\(\dfrac{AF}{AE}=\dfrac{AH^2}{AC}:\dfrac{AH^2}{AB}=\dfrac{AB}{AC}=tanC\)
=>\(AF=AE\cdot tanC\)
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(HB\cdot HC=AH^2\left(1\right)\)
Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=HA^2\left(2\right)\)
Từ (1) và (2) suy ra \(HB\cdot HC=AE\cdot AB\)