/2x+3/=x+2
tìm x.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2x\left(x^3-3\right)-2x^4=18\\ 2x^4-6x-2x^4=18\\ -6x=18\\ x=-3\)
\(b,9x\left(4-x\right)+\left(3x+1\right)^2=2\\ 36x-9x^2+9x^2+6x+1=2\\ 42x=2-1\\ 42x=1\\ x=\dfrac{1}{42}\)
\(a,\Leftrightarrow2x^4-3x-2x^4=18\Leftrightarrow-3x=18\Leftrightarrow x=-6\\ b,\Leftrightarrow36x-9x^2+9x^2+6x+1=2\\ \Leftrightarrow42x=1\Leftrightarrow x=\dfrac{1}{42}\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-5.\left(\dfrac{1}{2}\right)^3+3\left(\dfrac{1}{2}\right)^2+\dfrac{2}{2}+5-5\left(\dfrac{1}{2}\right)^3+6\left(\dfrac{1}{2}\right)^2+\dfrac{2}{2}+5\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-\dfrac{5.1}{8}+\dfrac{3.1}{4}+6-\dfrac{5.1}{8}+\dfrac{6.1}{4}+6\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-\dfrac{5}{8}+\dfrac{3}{4}+6-\dfrac{5}{8}+\dfrac{3}{2}+6\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=13\)
\(\dfrac{x}{x+2}+\dfrac{2}{x-2}+\dfrac{2x+4}{4-x^2}\\ =\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x+2x+4-2x-4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x}{x+2}\)
\(\left|x+1\right|=3\\ \left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.=>\left[{}\begin{matrix}x=2\left(loai\right)\\x=-4\left(tm\right)\end{matrix}\right.\)
với x=-4 thì
\(\dfrac{-4}{-4+2}=\dfrac{-4}{-2}=2\)
\(=>P=\dfrac{x}{x+2}+\dfrac{2}{x-2}+\dfrac{-2x-4}{x^2-4}\)`(x ne +-2)`
\(P=\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{-2x-4}{\left(x+2\right)\left(x-2\right)}\)
\(P=\dfrac{x^2-2x+2x+4-2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(P=\dfrac{x}{x+2}\)
`|x+1| =3`
`=>[(x+1=3),(x+1=-3):}`
`=> [(x=3-1=2(ktm) ),(x=-3-1=-4(t/m)):}`
Thay `x=-4` vào `P` ta đc
`P= (-4)/(-4+2) = 2`
Phương trình hoành độ giao điểm của d2 và d3 là:
2x+3=-x+2
\(\Leftrightarrow3x=-1\)
hay \(x=-\dfrac{1}{3}\)
Thay \(x=-\dfrac{1}{3}\) vào y=-x+2, ta được:
\(y=\dfrac{1}{3}+2=\dfrac{7}{3}\)
Thay \(x=-\dfrac{1}{3}\) và \(y=\dfrac{7}{3}\) vào d1, ta được:
\(3m\cdot\dfrac{-1}{3}+m-2=\dfrac{7}{3}\)
\(\Leftrightarrow0m=\dfrac{13}{3}\left(vôlý\right)\)
Để A là số nguyên thì \(2x-1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{1;0;3;-2\right\}\)
Bài 2:
a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-4\)
hay \(x=\dfrac{2}{7}\)
b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)
\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Bài 1:
a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)
\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)
\(=xy\)
=1
b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)
\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)
\(=x^2-y^2\)
\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)
\(\left|2x+3\right|=x+2\) (1)
\(\left|2x+3\right|=\orbr{\begin{cases}2x+3\Leftrightarrow x\ge-\frac{3}{2}\\-2x-3\Leftrightarrow x< -\frac{3}{2}\end{cases}}\)
Với \(x\ge-\frac{3}{2}\)\(\Rightarrow\)(1) trở thành:
\(2x+3=x+2\)
\(2x-x=2-3\)
\(x=-1\)( chọn )
Với \(x< -\frac{3}{2}\Rightarrow\)(1) trở thành:
\(-2x-3=x+2\)
\(-3-2=x+2x\)
\(3x=-5\)
\(x=-\frac{5}{3}\)( chọn )
Vậy \(\orbr{\begin{cases}x=-1\\x=-\frac{5}{3}\end{cases}}\)
Tham khảo nhé~
\(\left|2x+3\right|=x+2\)
Nếu \(2x+3\ge0\Leftrightarrow x\ge-\frac{3}{2}\)
\(\Rightarrow2x+3=x+2\)
\(2x-x=2-3\)
\(x=-1\left(TM\right)\)
Nếu \(2x+3< 0\Leftrightarrow x< -\frac{3}{2}\)
\(\Rightarrow2x+3=-x-2\)
\(2x+x=-2-3\)
\(3x=-5\)
\(x=-\frac{5}{3}\left(tm\right)\)
Vậy ....