cho tam giac ABC vuong tai B ,AB = 6cm ,BC = 8cm , tren BD lay C sao cho BC= 3 cm.t d ke DX sao cho DX //AB cat AC tai E. tinh gocBAD , BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô hướng dẫn nhé :)
Ta thấy \(\Delta EAD=\Delta BAC\) (Hai cạnh góc vuông)
nên góc AED bằng góc ABC. Lại có góc ABC bằng góc CAM (cùng phụ góc ACB)
Vậy góc AED bằng góc MAE hay tam giác EMA cân tại M hay EM = MA.
Ta thấy góc MAD phụ góc MAC, góc MDA phụ góc MEA nên góc MAD bằng góc MDA, hay tam giác AMD cân tại M, từ đó MA = MD.
Tóm lại EM = MA = MD nên M là trung điểm ED, hay AM là trung tuyến cảu tam giác ACE.
Chúc em thi tốt :))
a, dễ tự làm
b, xét tam giác CAB và tam giác DAB có : AB chung
AC = AD (gt)
góc CAB = góc DAB = 90
=> tam giác CAB = tam giác DAB (2cgv)
=> góc CBA = góc DBA (đn)
xét tam giác AFB và tam giác AEB có : AB chung
góc AFB = góc AEB = 90
=> tam giác AFB = tam giác AEB (ch - gn)
A) Xét \(\Delta_VABH\) và \(\Delta_vCBA\):
\(\widehat{B}\): chung
\(\Rightarrow\Delta_vABH\sim\Delta_vCBA\left(gn\right)\)
B) Đề sai vì BC\(=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(\Rightarrow BE=10-4=6\left(cm\right)\)
\(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
mà \(AH^2=BH.HC\) nên AH=BE
Vậy đề sai.
C) Có: \(BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)
\(S_{ABH}=\frac{1}{2},3,6.4,8=8,64\left(cm^2\right)\)
a) Ta có: BC2 = 52 = 25
AB2 + AC2 = 32 + 42 = 9 + 16 = 25
Suy ra: BC2 = AB2 + AC2
Do đó: \(\Delta ABC\) vuông tại A.
b) Xét hai tam giác vuông ABH và DBH có:
AB = BD (gt)
BH: cạnh huyền chung
Vậy: \(\Delta ABH=\Delta DBH\left(ch-cgv\right)\)
Suy ra: \(\widehat{ABH}=\widehat{DBH}\) (hai góc tương ứng)
Do đó: BH là tia phân giác của \(\widehat{ABC}\).
c) Ta có: AM = MB = MC = \(\dfrac{1}{2}.BC=\dfrac{1}{2}.5=\dfrac{5}{2}\) (cm) (theo định lí đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)
Do đó: \(\Delta ABM\) cân tại M (đpcm).
a) Xét tam giác vuông ABC có :
Góc ACB = \(90^o-35^o\)
Góc ACB = \(55^o\)
b) Xét tam giác ABE và tam giác DBE có
Góc BAE= góc BDE \(\left(=90^o\right)\)
AB = BD (giả thiết)
BE là cạnh chung
Do đó tam giác ABE = tam giác DBE (cạnh huyền - cạnh góc vuông)
c) Xét tam giác EKA và tam giác ECD có
góc KAE = góc CDE \(\left(=90^o\right)\)
EA = ED (tam giác ABE = tam giác DBE)
góc KEA = góc CED ( đối đỉnh )
Do đó tam giác EKA = tam giác ECD (cạnh góc vuông - góc nhọn)
\(\Rightarrow EK=EC\) (hai cạnh tương ứng)
d) Ta có:
tam giác ABE vuông nên góc AEB là góc nhọn
\(\Rightarrow\) góc BEC là góc tù
\(\Rightarrow\) CB>EB (trong tam giác tù cạnh đối diện với góc tù là cạnh lớn nhất) (1)
Ta lại có :
tam giác KAE vuông tại A nên góc KEA là góc nhọn
\(\Rightarrow\) góc KEC là góc tù
\(\Rightarrow\) CK>EK (trong tam giác tù cạnh đối diện với góc tù là cạnh lớn nhất) (2)
Từ (1) và (2) ta có
EB+EK<CB+CK (đpcm)
ai giup voi