5x^2+5y^2+17z^2-4xy-4yz-8zx+1 chứng minh luôn lớn hơn 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,\(x^2\)+\(^{y^2}\)-2xy-4xz+4yz
= (\(x^2-2xy+y^2\))-(4xz-4yz)
= \(^{\left(x-y\right)^2}\)-4z(x-y)
=(x-y)(x-y-4z)
2, \(5x-5y\)-\(2x^2\)+4xy-\(2y^2\)
=(5x-5y) -(\(\)\(2x^2-4xy+2y^2\))
=5(x-y) -2 (\(X^2-2xy+y^2\))
=5(x-y) -2 \(\left(x-y\right)^2\)
=(x-y)(5-2x+2y)
đứng thì like cho mik nha
1. \(x^2+y^2-2xy-4xz+4yz=\left(x-y\right)^2-4z\left(x-y\right)=\left(x-y\right)\left(x-y-4z\right)\)
2. \(5x-5y-2x^2+4xy-2y^2=5x-5y-x^2+2xy-y^2-x^2+2xy-y^2=5\left(x-y\right)-\left(x-y\right)^2-\left(x-y\right)^2=\left(x-y\right)\left(5-x+y-x+y\right)=\left(x-y\right)\left(5-2x+2y\right)\)
\(x^2-4xy+5y^2+2x-8y+5=\left(x-2y+1\right)^2+\left(y-2\right)^2\ge0\forall x,y\).
x2 - 4xy + 5y2 + 2x - 8y + 5
= x2 + 4y2 + 1 - 4xy + 2x - 4y + y2 - 2y + 1
= (x - 2y + 1)2 + (y - 1)2 ≥ 0
\(A=\left(x^2-4xy+4y^2\right)+\left(x^2+10x+25\right)+\left(y^2-22y+121\right)+2\\ A=\left(x-2y\right)^2+\left(x+5\right)^2+\left(y-11\right)^2+2\ge2>0\)
\(-x^2+4xy-5y^2-8y-18\)
\(=-\left(x^2-4xy+4y\right)-\left(y^2+8y+16\right)-2\)
\(=-\left(x+2y\right)^2-\left(y+4\right)^2-2\)
Vì \(-\left(x+2y\right)^2\le0;-\left(y+4\right)^2\le\forall x;y\)
\(\Rightarrow-\left(x+2y\right)^2-\left(y+4\right)^2-2< 0\forall x;y\)
\(\Rightarrow dpcm\)
a) \(-x^2+4xy-5y^2-8y-18=-\left(x^2-4xy+5y^2+8y+18\right)\)
\(=-\left[\left(x^2-4xy+4y^2\right)+\left(y^2+8y+16\right)+2\right]\)
\(=-\left[\left(x-2y\right)^2+\left(y+4\right)^2+2\right]\)
Vì \(\left(x-2y\right)^2\ge0\forall x,y\); \(\left(y+4\right)^2\ge0\forall y\); \(2>0\)
\(\Rightarrow\left(x-2y\right)^2+\left(y+4\right)^2+2>0\)
\(\Rightarrow-\left[\left(x-2y\right)^2+\left(y+4\right)^2+2\right]< 0\)
\(\Rightarrow-x^2+4xy-5y^2-8y-18\)luôn âm với mọi x ( đpcm )
Ta có : 3x^2+5y^2-4xy-4x+4y+7
= x2-4xy+4y2+2x2-4x+2+y2+4y+4+1
= (x-2y)2+2(x2-2x+1)+(y+2)2+1
= (x+2y)2+2(x-1)2+(y+2)2+1 > 1 (với mọi x,y)
hay (x+2y)2+2(x-1)2+(y+2)2+1 >0 (với mọi x,y)
Vậy 3x^2+5y^2-4xy-4x+4y+7 > 0 đúng với mọi x, y :
\(5x^2+5y^2+17z^2-4xy-4yz-8zx+1\)
\(=4x^2-4xy+y^2+4y^2-4yz+z^2+16z^2-8zx+x^2+1\)
\(=\left(2x-y\right)^2+\left(2y-z\right)^2+\left(4z-x\right)^2+1\ge1\)