cho tam giac ABC co BC=2AB M la trung diem BC.goi D la trung diem BM tren tia doi tia DA ve doan DE=DA
c)CMR AC=2AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bn tự vẽ !
a, Ta có :
\(BC=2AB\Leftrightarrow AB=\dfrac{1}{2}BC\\ Mà:\\ MB=MC=\dfrac{1}{2}BC\\ \Rightarrow MB=MC=AB\)
\(\Rightarrow\) Tam giác ABM cân tại B
\(\Rightarrow\widehat{MAB}=\widehat{BMA}\\ \RightarrowĐpcm\)
b, Xét tam giác ABD và tam giác EMD có :
\(\left\{{}\begin{matrix}BD=MD\left(gt\right)\\\widehat{ADB}=\widehat{EDM}\left(haigócđốiđỉnh\right)\\AD=DE\left(gt\right)\end{matrix}\right.\\ \Rightarrow\Delta ABD=\Delta EMD\left(c-g-c\right)\\ \Rightarrow\widehat{DBA}=\widehat{DME}\left(haigóctươngứng\right)\)
Mà hai góc này nằm ở vị trí so le trong
\(\Rightarrow\) ME // AB
a: Xét ΔBAM có BA=BM
nên ΔBAM cân tại B
=>góc BMA=góc BAM
b: Xét tứ giác ABEM có
D la trung điểm chung của AE và BM
nên ABEM là hình bình hành
Suy ra: AB//ME
a: Xét ΔEDB và ΔADC có
DE=DA
\(\widehat{EDB}=\widehat{ADC}\)
DB=DC
Do đo: ΔEDB=ΔADC
b: Xét tứ giác ABEC có
D là trung điểm của AE
D là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: AB//EC
=>\(\widehat{BAD}=\widehat{CEA}\)
mà \(\widehat{CEA}>\widehat{CAD}\)
nên \(\widehat{BAD}>\widehat{DAC}\)