so sánh 2 2005 và 5864
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(2^{2005}\right)^3=\left(2^3\right)^{2005}=8^{2005}\)
\(\left(3^{2005}\right)^2=\left(3^2\right)^{2005}=9^{2005}\)
Ta thấy : \(8^{2005}< 9^{2005}\)
Vậy \(\left(2^{2005}\right)^3< \left(3^{2005}\right)^2\)
\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)
\(2005A=\frac{2005^{2006}+2005}{2005^{2006}+1}=\frac{2005^{2006}+1+2004}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}\)
\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
\(2005B=\frac{2005^{2005}+2005}{2005^{2005}+1}=\frac{2005^{2005}+1+2004}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2004}{2005^{2005}+1}\)
Vì \(\frac{2004}{2005^{2006}+1}<\frac{2004}{2005^{2005}+1}\)
Nên A<B
\(TC:\)
\(\dfrac{2007}{2005}=\dfrac{2005+2}{2005}=1+\dfrac{2}{2005}\)
\(\dfrac{2005}{2003}=\dfrac{2003+2}{2003}=1+\dfrac{2}{2003}\)
\(\text{Khi đó :}\)
\(\dfrac{2}{2003}>\dfrac{2}{2005}\) \(\)
\(\Rightarrow\dfrac{2005}{2003}>\dfrac{2007}{2005}\)
A = (2005 - 1).(2005 +1).(20052 + 1) = (20052 - 1).(20052 + 1) = 20054 - 1 < 20054
=> A < B
A=20052005+120052006+1<20052005+1+200420052006+1+2004=2005.(20052004+1)2005.(20052005+1)==20052004+120052005+1=B.�=20052005+120052006+1<20052005+1+200420052006+1+2004=2005.(20052004+1)2005.(20052005+1)==20052004+120052005+1=�.
Vậy A < B
A=20052005+120052006+1<20052005+1+200420052006+1+2004=2005.(20052004+1)2005.(20052005+1)==20052004+120052005+1=B.�=20052005+120052006+1<20052005+1+200420052006+1+2004=2005.(20052004+1)2005.(20052005+1)==20052004+120052005+1=�.
Vậy A < B
\(N=\frac{2004+2005}{2005+2006}=\frac{2004}{2005+2006}+\frac{2005}{2005+2006}\)
\(\text{Vì }\frac{2004}{2005}>\frac{2004}{2005+2006};\frac{2005}{2006}>\frac{2005}{2005+2006}\text{nên:}\)
\(\frac{2004}{2005}+\frac{2005}{2006}>\frac{2004}{2005+2006}+\frac{2005}{2005+2006}\)
Vậy M>N
22005 < 5864
22005 < 5864
TICK TỚ NHA BẠN