10x=5y=6z và x+y+z=56
Lm nhanh giúp mình nha mình đang gấp lắm rùi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}\)\(\text{và }3x-5y+6z=9\)
MÌNH ĐANG CẦN GẤP GIÚP MÌNH NHA
\(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}\)\(\Leftrightarrow\frac{3\left(x-1\right)}{15}=\frac{5\left(y-2\right)}{15}=\frac{6\left(z-2\right)}{12}\)
\(\Leftrightarrow\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}\).Áp dụng tc dãy tỉ số "=" nhau ta có:
\(\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}=\frac{\left(3x-3\right)-\left(5y-10\right)+\left(6z-12\right)}{15-15+12}=\frac{9-5}{12}=\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}\frac{3x-3}{15}=\frac{1}{3}\Rightarrow x=\frac{8}{3}\\\frac{5y-10}{15}=\frac{1}{3}\Rightarrow y=3\\\frac{6z-12}{12}=\frac{1}{3}\Rightarrow z=\frac{8}{3}\end{cases}}\)
Lời giải:
a.
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)
\(\Rightarrow \left\{\begin{matrix} x=60\\ y=45\\ z=40\end{matrix}\right.\)
b)
Từ đkđb suy ra \(\frac{10x}{1}=\frac{5y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}=\frac{10x-5y+z}{1-\frac{1}{3}+\frac{1}{6}}=\frac{25}{\frac{5}{6}}=30\)
\(\Rightarrow \left\{\begin{matrix} x=3\\ y=2\\ z=5\end{matrix}\right.\)
Vì y = x + 1
<=> 3x + 5 . ( x + 1 ) = 13
<=> 3x + 5x + 5 = 13
<=> 8x = 13 - 5
<=> 8x = 8
<=> x = 8 : 8
<=> x = 1
Có x thì tìm y: y = x + 1
y = 1 + 1
y = 2
Vậy: x = 1, y = 2
Vì y = x + 1
<=> 3x + 5 . ( x + 1 ) = 13
<=> 3x + 5x + 5 = 13
<=> 8x = 13 - 5
<=> 8x = 8
<=> x = 8 : 8
<=> x = 1
Có x thì tìm y: y = x + 1
y = 1 + 1
y = 2
Vậy: x = 1, y = 2
\(10x=15y\Rightarrow\frac{x}{15}=\frac{y}{10}\left(1\right)\)
\(15y=6z\Rightarrow\frac{y}{6}=\frac{z}{15}\left(2\right)\)
Chia hai vế của (1) cho 3 ta được: \(\frac{x}{45}=\frac{y}{30}\)
Chia hai vế của (2) cho 5 ta được: \(\frac{z}{75}=\frac{y}{30}\)
Từ đó ta có; \(\frac{x}{15}=\frac{y}{30}=\frac{z}{75}=\frac{10x}{450}=\frac{5y}{150}\\ =\frac{10x-5y+z}{450-150+75}=\frac{25}{375}=\frac{1}{15}\)
Suy ra: \(x=3;y=2;z=5\)
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\left(1\right)\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{-30}{15}=-2\)
\(\Rightarrow\hept{\begin{cases}3x=\left(-2\right).63=-126\Rightarrow x=-\frac{126}{3}=-42\\7y=\left(-2\right).98=-196\Rightarrow y=-\frac{196}{7}=-28\\5z=\left(-2\right).50=-100\Rightarrow z=-\frac{100}{5}=-20\end{cases}}\)
Vậy \(x=-42;y=-28;z=-20\).
Ta có :
2x=3y\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14};\)\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\)\(\frac{3x-7y+5z}{63-98+50}\)\(=\frac{-30}{15}=-2\)
\(\frac{x}{21}=-2\Rightarrow x=-42\)
\(\frac{y}{14}=-2\Rightarrow y=-28\)
\(\frac{z}{10}=-2\Rightarrow z=-20\)
Vậy x;y;z lần lượt là -42;-28;-20
h) x/y = 9/10 ⇒ y/10 = x/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
y/10 = x/9 = (y - x)/(10 - 9) = 120/1 = 120
*) x/9 = 120 ⇒ x = 120.9 = 1080
*) y/10 = 120 ⇒ y = 120.10 = 1200
Vậy x = 1080; y = 1200
k) x/y = 3/4
⇒ x/3 = y/4
⇒ 5y/20 = 3x/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
5y/20 = 3x/9 = (5y - 3x)/(20 - 9) = 33/11 = 3
*) 3x/9 = 3 ⇒ x = 3.9:3 = 9
*) 5y/20 = 3 ⇒ y = 3.20:5 = 12
Vậy x = 9; y = 12
15y=6z =>5y=2z (chia 3 đi)
Đổi 10x = 6z
Vậy ta có:
6z - 2z + z=25
5z=25
=> z=5 ; x=3 ; y=2
Nếu sai thì em xin lỗi
Ta có 10x=5y=6z
=>y=2x
=>z=5x/3
=>x+y+z=x+2x+5x/3=14x/3=56
=>x=12
=>y=24,z=20