Tìm x:
32x + 2x+2 = 56
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(8x+56:14=60\)
\(\Rightarrow8x+4=60\)
\(\Rightarrow8x=56\)
\(\Rightarrow x=\dfrac{56}{8}\)
\(\Rightarrow x=7\)
b) Mình làm rồi nhé !
c) \(41-2^{x+1}=9\)
\(\Rightarrow2^{x+1}=41-9\)
\(\Rightarrow2^{x+1}=32\)
\(\Rightarrow2^{x+1}=2^5\)
\(\Rightarrow x+1=5\)
\(\Rightarrow x=4\)
d) \(3^{2x-4}-x^0=8\)
\(\Rightarrow3^{2x-4}-1=8\)
\(\Rightarrow3^{2x-4}=9\)
\(\Rightarrow3^{2x-4}=3^2\)
\(\Rightarrow2x-4=2\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
g) \(65-4^{x+2}=2014^0\)
\(\Rightarrow65-4^{x+2}=1\)
\(\Rightarrow4^{x+2}=64\)
\(\Rightarrow4^{x+2}=4^3\)
\(\Rightarrow x+2=3\)
\(\Rightarrow x=1\)
i) \(120+2\left(4x-17\right)=214\)
\(\Rightarrow2\left(4x-17\right)=214-120\)
\(\Rightarrow2\left(4x-17\right)=94\)
\(\Rightarrow4x-17=47\)
\(\Rightarrow4x=47+17\)
\(\Rightarrow4x=64\)
\(\Rightarrow x=16\)
a: \(8x+56:14=60\)
=>8x+4=60
=>8x=60-4=56
=>x=56/8=7
b: \(5^{2x-3}-2\cdot5^2=5^2\cdot3\)
=>\(5^{2x-3}=5^2\cdot3+2\cdot5^2=5^3\)
=>2x-3=3
=>2x=6
=>x=3
c: \(41-2^{x+1}=9\)
=>\(2^{x+1}=41-9=32\)
=>x+1=5
=>x=4
d: \(3^{2x-4}-x^0=8\)
=>\(3^{2x-4}-1=8\)
=>\(3^{2x-4}=8+1=9\)
=>2x-4=2
=>2x=6
=>x=3
g: \(65-4^{x+2}=2014^0\)
=>\(65-4^{x+2}=1\)
=>\(4^{x+2}=65-1=64\)
=>x+2=3
=>x=1
i: 120+2(4x-17)=214
=>2(4x-17)=214-120=94
=>4x-17=94/2=47
=>4x=64
=>\(x=\dfrac{64}{4}=16\)
\(a,\Rightarrow\left(4x-1\right)^2=25=5^2=\left(-5\right)^2\\ \Rightarrow\left[{}\begin{matrix}4x-1=5\\4x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-1\end{matrix}\right.\\ b,\Rightarrow2^x\left(1+2^3\right)=144\\ \Rightarrow2^x=144:9=16=2^4\Rightarrow x=4\\ c,\Rightarrow3^{2x+3}=3^{2\left(x+3\right)}\\ \Rightarrow2x+3=2x+6\Rightarrow0x=3\left(vô.lí\right)\\ \Rightarrow x\in\varnothing\)
a: Ta có: \(2^{x-1}=32\)
\(\Leftrightarrow x-1=5\)
hay x=6
b: Ta có: \(3^{2x+1}=81\)
\(\Leftrightarrow2x+1=4\)
\(\Leftrightarrow2x=3\)
hay \(x=\dfrac{3}{2}\)
c: Ta có: \(2^x-26=6\)
\(\Leftrightarrow2^x=32\)
hay x=5
d: Ta có: \(27\cdot3^x=243\)
\(\Leftrightarrow3^x=9\)
hay x=2
a) 2x = 16 <=>x=8
b) 3x+1 = 9x <=>9x-3x=1
<=>6x=1 <=>x=1/6
c) 23x+2 = 4x+5 <=>23x-4x=5-2
<=>19x=3 <=>x=3/19
d) 32x-1 = 243 <=>32x=244
<=>x=61/8
a/ 2x=16
x=8
b/ 3x+1=9x
3x-9x=-1
-6x=-1
x=1/6
c/ 23x+2=4x
23x-4x=-2
19x=-2
x=-2/19
d/ 32x-1=243
32x=244
x=61/8
a: \(\left(2x-3\right)\left(3x^2+1\right)-6x\left(x^2-x+1\right)+3x^2-2x=10\)
\(\Leftrightarrow6x^3+2x-9x^2-3-6x^3+6x^2-6x+3x^2-2x=10\)
\(\Leftrightarrow-6x-3=10\)
=>-6x=13
hay x=-13/6
b: \(\Leftrightarrow3x^2-3x+x-2-3x^2+5x=-8-5x\)
=>3x-2=-5x-8
=>8x=-6
hay x=-3/4
c: \(\Leftrightarrow64x^3-27-64x^3+32x^2-32x^2+x=20\)
=>x-27=20
hay x=47
Chọn A
∫ 2 x 2 + 2 x + 3 2 x + 1 d x = ∫ 2 x + 1 2 + 5 2 2 x + 1 d x = 1 8 ( 2 x + 1 ) 2 + 5 4 ln 2 x + 1 + C
a: \(x^2\left(2x-3\right)+8x-12=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x^2+4\right)=0\)
=>2x-3=0
hay x=3/2
b: \(\Leftrightarrow\left(2x-5\right)\left(2x+10\right)-\left(2x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+10-x+1\right)=0\)
=>(2x-5)(x+11)=0
=>x=5/2 hoặc x=-11
c: \(\Leftrightarrow2x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
hay \(x\in\left\{0;4;-4\right\}\)
a) \(2x^3-32x=0\)
\(2x\left(x^2-16\right)=0\)
\(2x\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow2x=0\)hoặc \(\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
vậy \(x=0\) hoặc \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
b) \(\left(3x-2\right)^2-\left(x+5\right)^2=0\)
\(\left(3x-2-x-5\right)\left(3x-2+x+5\right)=0\)
\(\left(2x-7\right)\left(4x+3\right)=0\)
\(\orbr{\begin{cases}2x-7=0\\4x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{-3}{4}\end{cases}}\)
vậy \(\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{-3}{4}\end{cases}}\)
c) \(2\left(x+3\right)-x^2-3x=0\)
\(2\left(x+3\right)-\left(x^2+3x\right)=0\)
\(2\left(x+3\right)-x\left(x+3\right)=0\)
\(\left(2-x\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2-x=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
vậy \(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
d) \(4x^2-25-\left(2x+5\right)\left(x+7\right)=0\)
\(\left(4x^2-25\right)-\left(2x+5\right)\left(x+7\right)=0\)
\(\left(2x-5\right)\left(2x+5\right)-\left(2x+5\right)\left(x+7\right)=0\)
\(\left(2x+5\right)\left(2x-5-x-7\right)=0\)
\(\left(2x+5\right)\left(x-12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+5=0\\x-12=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-5}{2}\\x=12\end{cases}}\)
vậy \(\orbr{\begin{cases}x=\frac{-5}{2}\\x=12\end{cases}}\)
\(32^x+2^{x+2}=56\)
\(\Leftrightarrow\left(2^5\right)^x+2^{x+2}=56\)
\(\Leftrightarrow2^{5x}+2^{x+2}=56\)
\(\Leftrightarrow2^{x+2}\left(4^{2x-1}+1\right)=56\)
Ta có \(56=2^3\cdot7\)
Mà \(4^{2x-1}+1\)là số lẻ nên \(2^{x+2}=2^3\)
\(\Leftrightarrow x+2=3\)
\(\Leftrightarrow x=1\)
Thanks you :))