Phân tích đa thức thành nhân tử
(x+y)^4 + x^4 + y^4
= [(x+y)^2]^2 + x^4 + y^4
=(x^2 + 2xy + y^2)^2 + x^4 + y^4
=[(x^2 + 2xy) + y^2] ^2 + x^4 + y^4
=( x^4 + 2(x^2 + 2xy)y^2 + y^4) + x^4 + y^4
= (x^4 + 2x^2y^2 + 4xy^3 + y^4) + x^4 + y^4 (*)
= 2x^4 + 2x^2y^2 + 4xy^3 + 2y^4
= 2( x^4 + x^2y^2 + xy^3 + y^4)
Mấy bạn coi thử giùm mk cái dòng thứ (*) mk phân tích đùng chưa ạ... nếu đúng mấy bạn phân tích dùm mk cái dòng cuối nhen
Mấy bạn giúp giùm... mk gấp lắm ạ
Bạn sai ở dấu bằng thứ 4. Mình làm lại nhé.
\(\left(x+y\right)^4+x^4+y^4\)
\(=\left[\left(x+y\right)^2\right]^2+x^4+y^4\)
\(=\left(x^2+2xy+y^2\right)^2+x^4+y^4\)
\(=x^4+4x^2y^2+y^4+4x^3y+4xy^3+2x^2y^2+x^4+y^4\)
\(=2x^4+4x^3y+6x^2y^2+4xy^3+2y^4\)
\(=2\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)\)
\(=2.\left[\left(x^4+2x^3y+x^2y^2\right)+\left(2x^2y^2+2xy^3\right)+y^4\right]\)
\(=2.\left[\left(x^2+xy\right)^2+2.\left(x^2+xy\right).y^2+\left(y^2\right)^2\right]\)
\(=2.\left(x^2+xy+y^2\right)^2\)
Học tốt nhe.