Tính nhanh tổng sau
3/10.13+3/13.16+3/16.19+..+3/58.61
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)
\(A=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)
A=3/10.13 +3/13.16+ 3/16.19+....+3/58.61
A=1/10.13+1/13.16+1/16.19+.....+1/58.61
A=1/10- 1/13+ 1/13- 1/16+ 1/16- 1/19+...+1/58 –1/61
A=1/10 – 1/61
A= 61/610 – 10/610
A= 51/610
Mình giải xong rồi k nhá?
1.
E = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.10}\) + \(\dfrac{3}{10.13}\) + \(\dfrac{3}{13.16}\) + \(\dfrac{3}{16.19}\) + \(\dfrac{3}{19.22}\)
E = 1 - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{10}\) + ... +\(\dfrac{1}{19}\) - \(\dfrac{1}{22}\)
E = 1 - \(\dfrac{1}{22}\)
E = \(\dfrac{21}{22}\)
2.
(x - 4)(x - 5) = 0
TH1:
x - 4 = 0 => x = 4
TH2:
x - 5 = 0 => x = 5
Vậy: x = 4 hoặc x = 5
1: \(A=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{22\cdot25}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{22}-\dfrac{1}{25}\)
\(=1-\dfrac{1}{25}=\dfrac{24}{25}\)
Bài 1: Tính tổng S
\(S=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{19.22}\)
\(4S=\dfrac{4}{1.4}+\dfrac{4}{4.7}+\dfrac{4}{7.10}+...+\dfrac{4}{19.22}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{19}-\dfrac{1}{22}\)
\(=1-\dfrac{1}{22}\)
\(S=\dfrac{21}{22}.\dfrac{1}{4}=\dfrac{21}{88}\)
\(M=\dfrac{6}{10.13}+\dfrac{6}{13.16}+\dfrac{6}{16.19}+\dfrac{6}{19.21}\)
\(\dfrac{1}{2}M=\dfrac{3}{10.13}+\dfrac{3}{13.16}+\dfrac{3}{16.19}+\dfrac{3}{19.21}\)
\(\dfrac{1}{6}M=\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{21}\)
\(\dfrac{1}{6}M=\dfrac{1}{10}-\dfrac{1}{21}\)
\(M=\dfrac{11}{210}:\dfrac{1}{6}=\dfrac{11}{35}\)
\(N=\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{29}+\dfrac{1}{29}-\dfrac{1}{30}\)
\(=\dfrac{1}{20}-\dfrac{1}{30}\)
\(=\dfrac{1}{60}\)
\(\dfrac{M}{N}=\dfrac{11}{35}:\dfrac{1}{60}=\dfrac{132}{7}\)= \(\dfrac{132}{25}\)
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+....+\frac{3^2}{97.100}\)
\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)
\(A=3.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3.\left(\frac{1}{1}-\frac{1}{100}\right)=3-\frac{3}{100}=\frac{297}{100}\)
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+\frac{3^2}{13.16}+...+\frac{3^2}{97.100}\)
\(A=\frac{3}{1}-\frac{3}{4}+\frac{3}{4}-\frac{3}{7}+\frac{3}{7}-\frac{3}{10}+\frac{3}{10}-\frac{3}{13}+\frac{3}{13}-\frac{3}{16}+...+\frac{3}{97}-\frac{3}{100}\)
\(A=\frac{3}{1}-\frac{3}{100}\)
\(A=\frac{297}{100}\)
3/1.4 + 3/4.7 + .. +3/13.16
= 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + 1/13 - 1/16
= 1/1 - 1/16
= 15/16
\(\frac{3}{10\cdot13}+\frac{3}{13\cdot16}+...+\frac{3}{58\cdot61}\)
\(=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{58}-\frac{1}{61}\)
\(=\frac{1}{10}-\frac{1}{61}\)
\(=\frac{51}{610}\)
\(\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}+...+\frac{3}{58.61}\)
\(=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)
\(=\frac{1}{10}-\frac{1}{61}\)
\(=\frac{51}{610}\)
Học tốt !