K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

\(B=3+3^2+3^3+3^4+...+3^{50}\)

\(\Rightarrow3B=3^2+3^3+3^4+3^5+...+3^{51}\)

\(\Rightarrow2B=3^{51}-3\)

\(\Rightarrow B=\frac{3^{51}-3}{2}\)

\(C=4+4^2+4^3+4^4+...+4^{2018}\)

\(\Rightarrow4C=4^2+4^3+4^4+4^5+...+4^{2019}\)

\(\Rightarrow3C=4^{2019}-4\)

\(\Rightarrow C=\frac{4^{2019}-4}{3}\)

15 tháng 8 2018

\(B=3+3^2+3^3+...+3^{50}\)

\(\Rightarrow3B=3^2+3^3+3^4+....+3^{51}\)

\(\Rightarrow3B-B=\left(3^2+3^3+3^4+...+3^{51}\right)-\left(3+3^2+...+3^{50}\right)\)

\(\Rightarrow2B=3^{51}-3\)

\(\Rightarrow B=\frac{3^{51}-3}{2}\)

\(C=4+4^2+4^3+...+4^{2018}\)

\(\Rightarrow4C=4^2+4^3+4^4+....+4^{2019}\)

\(\Rightarrow4C-C=\left(4^2+4^3+4^4+...+4^{2019}\right)-\left(4+4^2+4^3+...+4^{2018}\right)\)

\(\Rightarrow3C=4^{2019}-4\)

\(\Rightarrow C=\frac{4^{2019}-4}{3}\)

\(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}\)

\(=2+\sqrt{3}-2\sqrt{3}\)

\(=2-\sqrt{3}\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2023

Lời giải:

a.

 \(A=\frac{2(\sqrt{x}-4)-3(\sqrt{x}+4)}{(\sqrt{x}-4)(\sqrt{x}+4)}+\frac{2\sqrt{x}+16}{(\sqrt{x}-4)(\sqrt{x}+4)}=\frac{-\sqrt{x}-20}{(\sqrt{x}-4)(\sqrt{x}+4)}+\frac{2\sqrt{x}+16}{(\sqrt{x}-4)(\sqrt{x}+4)}\\ =\frac{\sqrt{x}-4}{(\sqrt{x}-4)(\sqrt{x}+4)}=\frac{1}{\sqrt{x}+4}\)

b. Khi $x=4-2\sqrt{3}=(\sqrt{3}-1)^2\Rightarrow \sqrt{x}=\sqrt{3}-1$

$A=\frac{1}{\sqrt{3}-1+4}=\frac{1}{\sqrt{3}+3}$

29 tháng 11 2023

a: từ 1 đến 100 sẽ có \(\dfrac{100-1}{1}+1=100-1+1=100\left(số\right)\)

=>Sẽ có \(\dfrac{100}{2}=50\) cặp số

1-2+3-4+...+99-100

=(1-2)+(3-4)+...+(99-100)

=(-1)+(-1)+...+(-1)

=-1*50=-50

b: Sửa đề: \(2-4+6-8+...+46-48+50\)

Từ 2 đến 48 sẽ có \(\dfrac{48-2}{2}+1=24-1+1=24\left(số\right)\)

=>Sẽ có \(\dfrac{24}{2}=12\left(cặp\right)\)

\(2-4+6-8+...+46-48+50\)

\(=\left(2-4\right)+\left(6-8\right)+...+\left(46-48\right)+50\)

\(=\left(-2\right)+\left(-2\right)+...+\left(-2\right)+50\)

\(=50-2\cdot24=50-48=2\)

c: Đặt A=\(1+2-3+4+...+97+98-99+100\)

\(=\left(1+2-3+4\right)+\left(5+6-7+8\right)+...+\left(97+98-99+100\right)\)

\(=4+12+...+196\)

Từ 4 đến 196 sẽ có \(\dfrac{196-4}{8}+1=\dfrac{192}{8}+1=25\left(số\right)\)

Tổng của dãy A là: \(\left(196+4\right)\cdot\dfrac{25}{2}=\dfrac{25}{2}\cdot200=100\cdot25=2500\)

a: 1-2+3-4+...+99-100

=(1-2)+(3-4)+...+(99-100)

=(-1)+(-1)+...+(-1)

=-1*50=-50

c: 1+2-3-4+....+97+98-99-100

=(1+2-3-4)+(5+6-7-8)+...+(97+98-99-100)

=(-4)+(-4)+...+(-4)

=(-4)*25=-100

a: \(=3\sqrt{5}+2\sqrt{5}-2\sqrt{5}=3\sqrt{5}\)

b: \(=2\sqrt{2}+2\sqrt{2}+5\sqrt{2}=9\sqrt{2}\)

c: \(=4\sqrt{3}+3\sqrt{3}-3\sqrt{5}+2\sqrt{5}=7\sqrt{3}-\sqrt{5}\)

d: \(=5\sqrt{3}+4\sqrt{3}-10\sqrt{3}=-\sqrt{3}\)

e: \(=\left(\sqrt{7}-2\sqrt{3}\right)\cdot\sqrt{7}+2\sqrt{21}\)

=7-2*căn 21+2*căn 21

=7

f: \(=\left(2\sqrt{11}-3\sqrt{2}\right)\cdot\sqrt{11}+3\sqrt{22}\)

=22-3*căn 22+3*căn 22

=22

 

27 tháng 7 2023

a) \(3\sqrt{5}+\sqrt{20}-2\sqrt{5}\)

\(=3\sqrt{5}+2\sqrt{5}-2\sqrt{5}\)

\(=3\sqrt{5}\)

b) \(2\sqrt{2}+\sqrt{8}+\sqrt{50}\)

\(=2\sqrt{2}+2\sqrt{2}+5\sqrt{2}\)

\(=9\sqrt{5}\)

c) \(4\sqrt{3}+\sqrt{27}-\sqrt{45}+2\sqrt{5}\)

\(=4\sqrt{3}+3\sqrt{3}-3\sqrt{5}+2\sqrt{5}\)

\(=7\sqrt{3}-\sqrt{5}\)

d) \(\sqrt{75}+\sqrt{48}-\sqrt{300}\)

\(=5\sqrt{3}+4\sqrt{3}-10\sqrt{3}\)

\(=-\sqrt{3}\)

e) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)

\(=\left(2\sqrt{7}-2\sqrt{3}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)

\(=\left(\sqrt{7}-2\sqrt{3}\right)\sqrt{7}+2\sqrt{21}\)

\(=7-2\sqrt{21}+2\sqrt{21}\)

\(=7\)

f) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)

\(=\left(3\sqrt{11}-3\sqrt{2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)

\(=\left(2\sqrt{11}-3\sqrt{2}\right)\sqrt{11}+3\sqrt{22}\)

\(=22-3\sqrt{22}+3\sqrt{22}\)

\(=22\)

g) \(3\sqrt{45}-5\sqrt{125x}+7\sqrt{20x}+28\)

\(=9\sqrt{5}-25\sqrt{5x}+14\sqrt{5x}+28\)

\(=9\sqrt{5}-11\sqrt{5x}+28\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:
a. ĐKXĐ: $x>0; x\neq 4$

\(M=\frac{x}{\sqrt{x}(\sqrt{x}-2)}-\frac{4\sqrt{x}-4}{\sqrt{x}(\sqrt{x}-2)}=\frac{x-(4\sqrt{x}-4)}{\sqrt{x}(\sqrt{x}-2)}=\frac{x-4\sqrt{x}+4}{\sqrt{x}(\sqrt{x}-2)}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}(\sqrt{x}-2)}=\frac{\sqrt{x}-2}{\sqrt{x}}\)

b.

\(x=3+2\sqrt{2}=(\sqrt{2}+1)^2\Rightarrow \sqrt{x}=\sqrt{2}+1\)

\(M=\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{\sqrt{2}+1-2}{\sqrt{2}+1}=3-2\sqrt{2}\)

c.

$M>0\Leftrightarrow \frac{\sqrt{x}-2}{\sqrt{x}}>0$

$\Leftrightarrow \sqrt{x}-2>0$

$\Leftrightarrow \sqrt{x}>2\Leftrightarrow x>4$

Kết hợp đkxđ suy ra $x>4$

a) Ta có: \(B=\left(\dfrac{x+3\sqrt{x}-3}{x-16}-\dfrac{1}{\sqrt{x}+4}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-4}\)

\(=\left(\dfrac{x+3\sqrt{x}-3-\sqrt{x}+4}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-4}\)

\(=\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\cdot\dfrac{\sqrt{x}-4}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+4}\)

11 tháng 1 2019

2/1+3/2+4/3+.........+2019/2018

=2019 +1/2+1/3+....+1/2018

(biểu thức ko thể rút gọn đc nx)