Tam giác ABC nhọn, góc A = 60 độ, vẽ đường cao BD và CE. CMR: DE = 1/2 BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABD vuông tại D có \(\cos\widehat{A}=\cos60^0=\dfrac{AD}{AB}=\dfrac{1}{2}\)
Tam giác AEC vuông tại E có \(\cos\widehat{A}=\cos60^0=\dfrac{AE}{AC}=\dfrac{1}{2}\)
Ta có \(\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(=\dfrac{1}{2}\right)\\\widehat{A}.chung\end{matrix}\right.\Rightarrow\Delta ADE\sim\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\dfrac{DE}{BC}=\dfrac{AD}{AB}=\dfrac{1}{2}\\ \Rightarrow2DE=BC\)
Bạn tự vẽ hình
Đặt \(AB=x\)
Xét \(\Delta DAB\) vuông tại D, ta có:
\(\cos A=\dfrac{AD}{AB}\) (tỉ số lượng giác)
\(\Rightarrow AD=AB.\cos A=x.\cos60^o=0,5x\)
Xét \(\Delta ADB\) và \(\Delta AEC\), ta có:
\(\left\{{}\begin{matrix}\widehat{A}chung\\\widehat{ABD}=\widehat{ACE\left(2gocphunhau\right)}\end{matrix}\right.\)
\(\Rightarrow\Delta ADB\sim\Delta AEC\left(g.g\right)\)
Xét \(\Delta ABC\) và \(\Delta ADE\), ta có:
\(\left\{{}\begin{matrix}\widehat{A}chung\\\dfrac{AB}{AC}=\dfrac{AD}{AE}\left(\Delta ABD\sim\Delta ADE\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ABC\sim\Delta ADE\left(c.g.c\right)\\ \Rightarrow\dfrac{AB}{AD}=\dfrac{BC}{DE}\\ \Rightarrow\dfrac{x}{0,5x}=\dfrac{BC}{DE}\\ \Rightarrow BC=\dfrac{DE.x}{0,5x}=2DE\)
Xét tứ giác BEDC có
góc BEC=góc BDC=90 độ
=>BEDC là tứ giác nội tiếp
=>góc AED=góc ACB
Xét ΔAED và ΔACB có
góc AED=góc ACB
góc A chung
=>ΔAED đồng dạng với ΔACB
=>S AED/S ACB=(AE/AC)^2=(cos60)^2=1/4
=>S AED=1/4*S ACB
Xét 2 tam giác AEC và tam giác HEB có:
\(\widehat{AEC}=\widehat{HEB}\left(=90^o\right)\)
AC=BH (giả thiết)
\(\widehat{CAE}=\widehat{BHE}\left(=\widehat{DHC}\right)\)
\(\Rightarrow\Delta AEC=\Delta HEB\left(ch.gn\right)\)
=> EC=EB (2 cạnh tương ứng)
=> tam giác ECB cân tại E
=> \(\widehat{B}=45^o\)
Đây chỉ là TH góc B nhọn, còn TH góc B tù thì làm tương tự tìm ra góc B=135 độ
Lấy B thuộc Ox , A thuộc Oy sao cho OA=OB
Dùng compa vẽ đtron (O;OB) và (B;OB), 2 đường tròn cắt nhau tại D ,nối O với D
Dùng compa vẽ đtron (D;R) và (B;R) (với R là bán kính bất kì), 2 đtron cắt nhau tại H, nối O với H
OD và OH chia góc ra làm 3 phần bằng nhau