Cho tam giác ABC, D thuộc tia đói BC sao cho BA=BD, E thuộc tia đối CB sao cho CE=CA.BH vuông góc với AD, CK vuông góc với AE. HK cắt AB tại M, cắt AC tại N.C/m: a.HK//BC,b. HK= 1 nửa chu vi tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Dođó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK và AH=AK
Xét ΔADE có
AH/AD=AK/AE
Do đó: HK//DE
hay HK//BC
c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)
\(\widehat{OCB}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{KCE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔADB=ΔAEC
=>AD=AE
=>ΔADE cân tại A
b,c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc MAB=góc NAC(góc MAB=góc MAC+góc BAC;góc NAC=góc NAB+góc BAC;gócMAC=góc NAB)
=>ΔAMB=ΔANC
=>BM=CN
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: \(\widehat{D}=\widehat{E}\)
Xét ΔHDB vuông tại H và ΔKEC vuông tại K có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔHDB=ΔKEC
Suy ra: BH=CK
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
Do đó: ΔAHB=ΔAKC
a,b: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE và góc D=góc E; góc DAB=góc EAC
Xet ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK
c: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
a:
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
c: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
a, \(BA=BD\left(gt\right)\Rightarrow\Delta ABD\) cân tại B có BH là đường cao nên BH là đường trung tuyến ứng với cạnh AD
\(\Rightarrow H\)là trung điểm của AD
\(CE=CA\left(gt\right)\Rightarrow\Delta ACE\)cân tại C có CK là đường cao nên CK là đường trung tuyến ứng với cạnh AE
\(\Rightarrow K\)là trung điểm của AE.
HK là đường trung bình của tam giác ADE \(\Rightarrow HK//DE\)hay \(HK//BC\)
b, \(\Delta ADC\)có: H là trung điểm của AD và \(HN//DC\left(cmt\right)\)
\(\Rightarrow N\)là trung điểm của AC
Tương tự, M là trung điểm của AB.
\(\Delta AHB\)có HM là đường trung tuyến ứng với cạnh huyền AB \(\Rightarrow HM=\frac{1}{2}AB\)
\(\Delta AKC\)có KN là đường trung tuyến ứng với cạnh huyền AC \(\Rightarrow KN=\frac{1}{2}AC\)
MN là đường trung bình của \(\Delta ABC\left(gt\right)\Rightarrow MN=\frac{1}{2}BC\)
Từ 3 điều trên, ta được:
\(\Rightarrow HM+KN+MN=\frac{1}{2}\left(AB+AC+BC\right)\Rightarrow HK=\frac{1}{2}\left(AB+AC+BC\right)\)
Chúc bạn học tốt.