K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2021

a: Để hàm số là hàm số bậc nhất thì 2m-3<>0

hay m<>3/2

b: Để hàm số đồng biến thì 2m-3>0

hay m>3/2

Để hàm số nghịch biến thì 2m-3<0

hay m<3/2

5 tháng 8 2023

a) Để hàm số là hàm bậc nhất thì 3 - m 0

m 3

b) Để hàm số là nghịch biến thì 3 - m < 0

m > 3

c) Thay tọa độ điểm A(2; -3) vào hàm số, ta được:

(3 - m).2 + 2 = -3

6 - 2m + 2 = -3

8 - 2m = -3

2m = 11

m = 11/2 (nhận)

Vậy m = 11/2 thì đồ thị hàm số đi qua A(2; -3)

(Sửa theo yêu cầu rồi nhé em!)

d) Thay tọa độ B(-1; -5) vào hàm số, ta được:

(2 - m).(-1) + 2 = -5

-2 + m + 2 = -5

m = -5 (nhận)

Vậy m = -5 thì đồ thị hàm số đi qua B(-1; -5)

5 tháng 8 2023

Chị ơi câu c điểm A( 2; -3) chị ạ

25 tháng 5 2022

Để đồ thị hàm số đi qua điểm \(M\left(2021;2022\right)\)

Thay \(x=2021;y=2022\) ta có:

\(2022=2021\left(m-2\right)+1\)

\(\Rightarrow2021\left(m-2\right)=2021\Rightarrow m-2=1\Rightarrow m=3\)

Khi đó ta có hàm số: \(y=x+1\)

Do \(1>0\) nên hàm số đồng biến trên R.

Thay x=1 và y=4 vào (d), ta được:

m+1=4

hay m=3

Vậy: Hàm số đồng biến trên R

NV
11 tháng 9 2021

Do đồ thị hàm số qua A, thay tọa độ A vào phương trình ta được:

\(4=m.1+1\Rightarrow m=3\)

\(\Rightarrow y=3x+1\)

Do \(a=3>0\Rightarrow\) hàm số đồng biến

3 tháng 12 2021

Bạn ơi hàm số đề bài của bạn là gì, bạn chưa đưa lên câu hỏi

3 tháng 12 2021

là hàm số trong câu hỏi dưới của bạn ấy

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:

a. Để hàm đồng biến thì $m-1>0\Leftrightarrow m>1$

Để hàm nghịch biến thì $m-1<0\Leftrightarrow m< 1$

b. Để đths đi qua điểm $A(-1;1)$ thì:

$y_A=(m-1)x_A+m$

$\Leftrightarrow 1=(m-1)(-1)+m=1-m+m$

$\Leftrightarrow 1=1$ (luôn đúng)

Vậy đths luôn đi qua điểm A với mọi $m$

c.

$x-2y=1\Rightarrow y=\frac{1}{2}x-\frac{1}{2}$

Để đths đã cho song song với đths $y=\frac{1}{2}x-\frac{1}{2}$ thì:

\(\left\{\begin{matrix} m-1=\frac{1}{2}\\ m\neq \frac{-1}{2}\end{matrix}\right.\Leftrightarrow m=\frac{3}{2}\)

d,

ĐTHS cắt trục hoành tại điểm có hoành độ $\frac{2-\sqrt{3}}{2}$, tức là ĐTHS đi qua điểm $(\frac{2-\sqrt{3}}{2}; 0)$

$\Rightarrow 0=(m-1).\frac{2-\sqrt{3}}{2}+m$

$\Leftrightarrow m=\frac{2-\sqrt{3}}{4-\sqrt{3}}$