Cho trước một số điểm, trong đó không có ba điểm nào thẳng hàng. Vẽ các đường thẳng đi qua các cặp điểm trong các điểm đó. Tính số điểm cho trước trong các trường hợp sau
a) Vẽ được tất cả 36 đường thẳng
b) Vẽ được tất cả 120 đường thẳng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 36 = 9 . 8 : 2 nên số điểm là 9 điểm.
b) 120 = 16 . 15 : 2 nên số điểm là 16 điểm
a) 36 = 9 . 8 : 2 nên số điểm là 9 điểm.
b) 120 = 16 . 15 : 2 nên số điểm là 16 điểm
Gọi số điểm cho trước là a. Ta có:
ax(a-1):2=105
=> ax(a-1)=210=14x15
=>a=15
Vậy cho trước 15 điểm.
Chọn 1 điểm bất kì, từ điểm đó kẻ tới n-1 điểm con lại ta được n-1 đường mà có n điểm => có n.(n-1) đường nhưng như vậy số đường thẳng đã được tính 2 lần nên số đường thẳng thực tế là: n.(n-1):2 (đường)
Ta có: n.(n-1):2 = 28
=> n.(n-1) = 28.2
=> n.(n-1) = 56 =8.7
=> n = 8
Vậy n = 8
Công thức tính điểm pít số đường thẳng cho trc học ở lớp 6 là n.(n + 1) / 2
Theo bài ra ta có: n.(n + 1) / 2 = 28
=> n.(n + 1) = 56
=> n.(n + 1) = 7.8
=> n = 7
Vậy n = 7
Theo đề bài ta có:
\(\frac{n\left(n+1\right)}{2}=28\)
\(\Rightarrow n\left(n+1\right)=28.2=56\)
\(\Rightarrow n\left(n+1\right)=7.8\)
\(\Rightarrow n=7\)
Cứ n đường thẳng thì lại có thể nối với n - 1 điểm còn lại n - 1 và tạo thành n - 1 đương thẳng
Vậy có tất cả :\(\frac{\left(n-1\right)n}{2}\)
\(\Rightarrow\frac{\left(n-1\right)n}{2}=28\)
\(\Rightarrow n\left(n-1\right)=56\)
\(\Rightarrow n\left(n-1\right)=7.8\)
=> n = 7
Vậy có 7 đường thẳng
a) Tính số đường thẳng khi có n điểm là: n(n-1)/2
=> n(n-1)/2=36 => n = 9
b) Tương tự => n = 16