Cho A = 5 + 52 + 53 + .... + 5992
Chứng minh rằng 4A + 5 là một lũy thừa của 125
Mong các bn giúp mình làm chi tiết câu này nhé !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5+5^2+5^3+...+5^{992}\)
\(\Rightarrow5A=5^2+5^3+5^4+...+5^{993}\)
\(\Rightarrow4A=5A-A=5^2+5^3+5^4+...+5^{993}-5-5^2-5^3-...-5^{992}=5^{993}-5\)
\(\Rightarrow4A+5=5^{993}-5+5=5^{993}=\left(5^3\right)^{331}=125^{331}\) là một lũy thừa của 125
\(A=5+5^2+5^3+...+5^{992}\)
\(5A=5^2+5^3+5^4+...+5^{993}\)
\(5A-A=\left(5^2+5^3+...+5^{993}\right)-\left(5+5^2+...+5^{992}\right)\)
\(4A=5^{993}-5\)
\(4A=5^3.5^{331}-5\)
mà 53 = 125
=> 4A là một lũy thừa của 125 ( đpcm )
\(A=5+5^2+5^3+...+5^{992}\)
\(\Rightarrow5A=5^2+5^3+5^4+...+5^{993}\)
\(\Rightarrow5A-A=4A=\left(5^2+5^3+5^4+...+5^{993}\right)-\left(5+5^2+5^3+...+5^{992}\right)=5^{993}-5\)
Mình nghĩ bạn ghi sai đề vì phải 4A+5 mới ra lũy thừa của 125
Là thế này:
\(\Rightarrow4A+5=5^{993}=\left(5^3\right)^{331}=125^{331}\)
nên 4A+5 là lũy thừa của 125
Sửa đề: 4S+5 là lũy thừa của 5
5S=5^2+5^3+...+5^2021
=>4S=5^2021-5
=>4S+5=5^2021 là lũy thừa của 5
Áp dụng BĐT cô si cho 3 số không âm ta có:
\(\frac{4a+1+1}{2}\ge\sqrt{4a+1}\Leftrightarrow\frac{4a+2}{2}\ge\sqrt{4a+1}\Leftrightarrow2a+1\ge\sqrt{4a+1}\)
Mà a>0 nên: \(2a+1>\sqrt{4a+1}\)
Tương tự với \(\sqrt{4b+1}\) và \(\sqrt{4c+1}\) ta có:
\(2b+1>\sqrt{4b+1};2c+1>\sqrt{4c+1}\)
=>\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}
a. \(5^{23}.5^3.5=5^{23+3+1}=5^{27}\)
\(3^5:9^2.9=3^5:\left(3^2\right)^2.3^2=3^5:3^4.3^2=3^{5-4+2}=3^3\)
b. A = {2; 3; 5; 7}
Bạn linh làm trước mà ko l ke lại l ike bạn kia, bất công bạn linh!
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
Ta có: \(A+5+5^2+5^3+...+5^{992}\)
\(\Rightarrow5A=5^2+5^3+5^4+...+5^{993}\)
\(\Rightarrow5A-A=\left(5^2+5^3+5^4+...+5^{993}\right)-\left(5+5^2+5^3+...+5^{992}\right)\)
\(\Rightarrow4A=5^{993}-5\)
=> 4A + 5 = 5993 = (53)331 = 125331
Vậy 4A + 5 là một lũy thừa của 125
A = 5 + 52 + 53 + ...+ 5992
5A = 52 + 53 + 54 + ... + 5993
5A - A = (52 + 53 + 54 + ... + 5993) - (5 + 52 + 53 + ...+ 5992)
4A = 5993 - 5
4A + 5 = 5993
4A + 5 = (53)331
4A + 5 =125331
Vậy 4A + 5 là một lũy thừa của 125