(1-1/2)x(1-1/3)x(1-1/4)x.....x(1-1/1996)x(1-1/1997) = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1-1/2)x(1-1/3)x(1-1/4)x....x(1-1/1996)x(1-1/997)
=1/2x2/3x3/4x....x1995/1996x1996/1997
=1x2x3x...x1995x1996/2x3x4x...x1996x1997
=1/1997
\(\Rightarrow\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x\frac{4}{5}x...x\frac{1996}{1997}\)
\(\Leftrightarrow1x\frac{1}{1997}\)\(=\frac{1}{1997}\)
=>(x+1/1998+1)+(x+2/1997+1)=(x+3/1996+1)+(x+4/1995+1)
=>x+1999=0
=>x=-1999
Suy ra \(\frac{x+1}{1999}+1+\frac{x+2}{1998}+1=\frac{x+3}{1997}+1+\frac{x+4}{1996}\)
Suy ra \(\frac{x+2000}{1999}+\frac{x+2000}{1998}=\frac{x+2000}{1997}+\frac{x+2000}{1996}\)
Suy ra \(\frac{x+2000}{1999}+\frac{x+2000}{1998}-\frac{x+2000}{1997}-\frac{x+2000}{1996}=0\)
Suy ra \(x+2000.\left(\frac{1}{1999}+\frac{1}{1998}-\frac{1}{1997}-\frac{1}{1996}\right)=0\)
Vì \(\left(\frac{1}{1999}+\frac{1}{1998}-\frac{1}{1997}-\frac{1}{1996}\right)\ne0\)
Suy ra x+2000=0
Suy ra x=-2000
Hok tốt
a) \(\dfrac{1997x1996-1}{1995x1997+1996}=\dfrac{1997x\left(1995+1\right)-1}{1995x1997+1996}\)
\(=\dfrac{1997x1995+1997-1}{1995x1997+1996}=\dfrac{1997x1995+1996}{1995x1997+1996}=1\)
b) \(\dfrac{1997x1996-995}{1995x1997+1002}=\dfrac{1997x\left(1995+1\right)-995}{1995x1997+1002}\)
\(=\dfrac{1997x1995+1997-995}{1995x1997+1002}=\dfrac{1997x1995+1002}{1995x1997+1002}=1\)
mẫu số
:1997x1996-1
1997x(1995+1)-1
1997x1995+1997x1-1
1997x1995+1997-1
1997x1995+1996
->1997x1996-1/1995x1997+1996
l i k e nhé
Bạn Huy Hoàng làm đúng đó mình đã làm bài này rồi.Chúc bạn làm bài tốt.
a/Viết đề mà cx sai đc nữa: \(\left(\frac{x+2}{98}+1\right)\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)\left(\frac{x+5}{95}+1\right)\)
\(\Leftrightarrow\frac{x+100}{98}.\frac{x+100}{97}-\frac{x+100}{96}.\frac{x+100}{95}=0\)
\(\Leftrightarrow\left(x+100\right)^2\left(\frac{1}{98.97}-\frac{1}{96.95}\right)=0\)
\(\Rightarrow x=-100\)
b/\(\Leftrightarrow\left(\frac{x+1}{1998}+1\right)+\left(\frac{x+2}{1997}+1\right)=\left(\frac{x+3}{1996}+1\right)+\left(\frac{x+4}{1995}+1\right)\)
\(\Leftrightarrow\frac{x+1999}{1998}+\frac{x+1999}{1997}-\frac{x+1999}{1996}-\frac{x+1999}{1995}=0\)
\(\Leftrightarrow\left(x+1999\right)\left(...\right)=0\Rightarrow x=-1999\)
b,\(\frac{x+1}{1998}+\frac{x+2}{1997}=\frac{x+3}{1996}+\frac{x+4}{1995}\)
=>\(\frac{x+1}{1998}+1\frac{x+2}{1997}+1=\frac{x+3}{1996}+1+\frac{x+4}{1995}+1\)
\(\Leftrightarrow\)\(\frac{x+1999}{1998}+\frac{x+1999}{1997}=\frac{x+1999}{1996}+\frac{x+1999}{1995}\)
\(\Leftrightarrow\)\(\frac{x+1999}{1998}+\frac{x+1999}{1997}-\frac{x+1999}{1996}-\frac{x+1999}{1995}\)=0
\(\Leftrightarrow\)\(\left(x+1999\right)\left(\frac{1}{1998}+\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\right)\)=0
\(\Leftrightarrow\)x+1999=0(Vì \(\frac{1}{1998}+\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\ne0\))
\(\Leftrightarrow\)x=-1999
Vậy x=-1999
( 1 - 1/2 ) x ( 1 - 1/3 ) x ( 1 - 1/4 ) x .... x ( 1 - 1/1996 ) x ( 1 - 1/1997 )
= 1/2 x 2/3 x 3/4 x .... x 1995/1996 x 1996/1997
= 1 x 2 x 3 x 4 x .... x 1995 x 1996 / 2 x 3 x 4 x .... x 1996 x 1997
= 1/1997